Thoroughbred® Basic™
Language Reference

THOROUGHBRED

eoftfevare cwleraalional, cac

Volume I: Directives, Functions, and System Variables: A -E
Version 8.8.0

46 Vreeland Drive, Suite 1 © Skillman, NJ 08558-2638
Telephone: 732-560-1377 « Outside NJ 800-524-0430
Fax: 732-560-1594

Internet address: http://www.tbred.com

Published by:

Thoroughbred Software International, Inc.
46 Vreeland Drive, Suite 1

Skillman, New Jersey 08558-2638

Copyright © 2013 by Thoroughbred Software International, Inc.

All rights reserved. No part of the contents of this document
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Document Number: BL8.8.0M101

The Thoroughbred logo, Swash logo, and Solution-1V Accounting logo, OPENWORKSHOP, THOROUGHBRED, VIP FOR
DICTIONARY-IV, VIP, VIPImage, DICTIONARY-1V, and SOLUTION-1V are registered trademarks of Thoroughbred
Software International, Inc.

Thoroughbred Basic, TS Environment, T-WEB, Script-1V, Report-1V, Query-1V, Source-1V, TS Network DataServer,
TS ODBC DataServer, TS ODBC R/W DataServer, TS DataServer for Oracle, TS XML DataServer, GWW, Gateway
for Windows™, TS ChartServer, TS ReportServer, TS WebServer, ThredComm, WorkStation Manager, Solution-1V
Reprographics, Solution-1V ezRepro, TS/Xpress, and DataSafeGuard are trademarks of Thoroughbred Software
International, Inc.

Other names, products and services mentioned are the trademarks or registered trademarks of their respective vendors or
organizations.

Preface

Thoroughbred Basic is a business BASIC designed to meet the needs
of developers who design, code, enhance, and maintain business
applications. The Thoroughbred Basic language is part of the
Thoroughbred Environment, part of the Thoroughbred 4GL
Environment, or part of the Thoroughbred OPENworkshop
Environment.

The Thoroughbred Basic Language Reference consists of three
volumes that contain full descriptions of Thoroughbred Basic
directives, functions, and system variables. This manual is a
companion to the Thoroughbred Basic Developer Guide, which
contains a summary of concepts implicit in the Thoroughbred Basic
language and descriptions of how Thoroughbred Basic can interact
with site hardware and software. The Thoroughbred Basic Language
Reference assumes knowledge of the BASIC language, programming
concepts, and program development procedures.

The Thoroughbred Basic Language Reference and the Thoroughbred
Basic Developer Guide are part of a Thoroughbred Software
International documentation library that includes the Thoroughbred
Basic Quick Reference Guide, the Thoroughbred Basic Installation
and Upgrade Guide, the Thoroughbred Basic Customization and
Tuning Guide, and the Thoroughbred Basic Utilities Manual.

Copyright © 2013 Thoroughbred Software International, Inc.

Notational Symbols

BOLD FACE/UPPERCASE Commands or keywords you must code exactly as shown. For

Italic Face

UPPERCASE ITALICS
Underscores

Brackets []

Vertical Bar |

Braces { }
Ellipsis
lowercase

Brackets []

punctuation

example, CONNECT VIEWNAME.

Information you must supply. For example, CONNECT viewname.
In most cases, lowercase italics denotes values that accept lowercase
or uppercase characters.

Denotes values you must capitalize. For example, CONNECT
VIEWNAME.

Displays a default in a command description or a default in a screen
image.

You can select one of the options enclosed by the brackets; none of
the enclosed values is required. For example, CONNECT
[VIEWNAME|viewname].

Piping separates options. One vertical bar separates two options, two
vertical bars separate three options. You can select only one of the
options

You must select one of the options enclosed by the braces. For
example, CONNECT {VIEWNAME|viewname}.

You can repeat the word or clause that immediately precedes the
ellipsis. For example, CONNECT {viewnamel}[[, viewname2] . . .].

displays information you must supply, for example, SEND
filename.txt.

are part of the syntax and must be included. For example, SEND

[filename.txt] means that you must type the brackets to execute the
command.

such as, (comma), ; (semicolon), : (colon), and () (parentheses), are
part of the syntax and must be included.

Copyright © 2013 Thoroughbred Software International, Inc.

ABS

Absolute Value

This numeric function returns the absolute value of a number.

|[ABS (numeric-value [,ERR=line-ref|,ERC=error-code])

numeric-value is any valid number.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
EXAMPLES
|ABS (Q)

If Q=-22, returns the value 22.
If Q=+22, still returns the value 22.

[LET NUMBER=12+ABS (Q*NUM(NUM_STRING$))

If Q=-2 and NUM_STRINGS$ contains "50", then NUMBER will be assigned the value 112.

1

Copyright © 2013 Thoroughbred Software International, Inc.

ACS
Arc Cosine

This numeric function returns the arc cosine of an angle in radians.

[ACS (numeric-value [,ERR=line-ref|,ERC=error-code])

numeric-value is any valid number from -1.0 through +1.0.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

This function returns a number from 0 through 3.14 (Pi) for numeric-values ranging from +1.0
through -1.0. If numeric-value exceeds this range an ERR=40 results.

Note that ACS and COS are reverse functions; that is:

ACS (COSG))
COS (ACS(x))

X
X

Since ACS(-1) gives the value of Pi, the following sequence of commands sets up two
mathematical constants that are used often:

FLOATING POINT
LET VALUE_OF_PI = ACS(-1)
LET RADIAN_IN_DEGREES = 360 / (2 * VALUE_OF PI)

EXAMPLES

[ACS (0) returns 1.57, i.e, Pi/2.

ACS (1) returns 0.

These examples are shown using PRECISION 2.
SEE ALSO

COS function

2

Copyright © 2013 Thoroughbred Software International, Inc.

ADD
Add Filename
This directive is used to find a file and add its location information to the file control table. Memory is

not allocated and a channel is not assigned. This speeds access to the file by performing the disk
directory search prior to loading, but unlike the ADDR directive, does not take memory space.

[ADD file-name [,ERR=Iine-ref],ERC=error-code]

file-name is any string of 8 characters or fewer used to name this file.

line-ref s the program line number or label to branch to if this directive produces an
error.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.

REMARKS

The ADD directive uses an entry in the file control table. The number of entries allowed in this
table is system dependent. For more information on the maximum number of entries, please
refer to the information on the IPLINPUT file CNF statement in the Thoroughbred Basic
Customization and Tuning Guide.

Use ADD for files that are not public program files. Use ADDR for public programs.

ADD does not open the file or assign a channel number.

Files that are added to the File Control Table can be removed with the DROP directive.

If an attempt is made to DISABLE a logical disk directory which contains a file or program
that has been added to the File Control Table with the ADD or ADDR directive, an ERR=0

results.

If an attempt is made to ADD a file, which already exists in, the File Control Table no error
results.

If an attempt is made to ADD a file and the file cannot be found, an ERR=12 results.

EXAMPLES

|[ADD " INDEX™"

finds the file "INDEX" and makes an entry in the File Control Table with its location
information.

3

Copyright © 2013 Thoroughbred Software International, Inc.

|[ADD A$,ERR=7999

If AS="INDEX", has the same effect as the first example; in addition, branches to statement
7999 if the directive produces an error condition.

SEE ALSO

ADDR and DROP directives

4

Copyright © 2013 Thoroughbred Software International, Inc.

ADDR

Add Memory-Resident Public Program

This directive loads a public program into executable memory and assigns it status as a resident public
program. Keeping a public program resident eliminates the time that is required to read it from the hard
disk each time it is CALLed.

ADDR program-name [,string-value] [,ERR=line-ref],ERC=error-code]
[,BNK=bank-num]

program-name is any string of 8 characters or fewer used to name the public program and
its program file.

string-value is any string in the format created by the CPP function.

line-ref is the program line number or label to branch to if this directive produces
an error.

error-code is a programmer-defined error code. Valid values are positive or negative

whole numbers.
bank-num is the integer number of the memory bank. The only valid value is 1.
REMARKS

In release levels before 8.1B2, the ADDR directive uses an entry in the file control table. The
number of entries allowed in this table is system dependent. Refer to the IPLINPUT parameter
for the maximum file control table entries. The number of public programs added to memory
with this directive is limited also by the maximum amount of available memory.

ADDR is for public programs only. Use ADD on files that are not public program files.

A public program added this way remains in the assigned memory bank until it is removed
with the DROP directive.

Public programs added to the memory bank with this directive do not displace any non-public
programs in the User Task Area.

The PUB function lists public programs added this way.

If an attempt is made to DISABLE a logical disk directory which contains a public program
that has been added to a memory bank with the ADDR directive, an ERR=0 results.

If an attempt is made to ADDR a public program, which is already, a resident public program
no error results.

If an attempt is made to ADDR a public program and the public program cannot be found, an
ERR=12 results.

5

Copyright © 2013 Thoroughbred Software International, Inc.

If an attempt is made to ADDR a file that is not a program file type, an ERR=17 results.

EXAMPLES

|ADDR ""INDEX"

loads the public program "INDEX" into the user's current memory bank as a resident public
program and updates the File Control Table.

|ADDR A$,ERR=7999

If AS="INDEX", has the same effect as the previous example, but branches to statement
7999 if an error occurs while processing this directive.

SEE ALSO

ADD, DROP, and DROP ALL directives

6

Copyright © 2013 Thoroughbred Software International, Inc.

ADDSORT

Add New Sort Sequence

This directive is used to create a new secondary sort key sequence for an MSORT or TISAM file. Each
MSORT file may contain up to 16 sort key definitions; each TISAM file may contain up to 8 sort key
definitions. Sort key definitions can contain up to 16 segment definitions, each with field and offset

positioning.

ADDSORT file-name, [sort-name:] sortdef [:-mode],
disk-num, [,ERR=line-ref],ERC=error-code]

file-name

sort-name:

sortdef

:mode

disk-num

line-ref

error-code

REMARKS

is any string of 8 characters or fewer used to name this file.

is any string of 20 characters or fewer used to name this sort sequence. If not
specified, the sequence number of this sort key definition, in string form, assigns
the first available sequence number starting from zero. The colon (*:") is required
in the syntax. Sort-name should not be specified in a TISAM file.

defines the sort key. There may be from 1 to 16 sort keys defined for MSORT,
from 1 to 8 for TISAM, and the first sort key defined constitutes the primary key.

is any string whose first character is "U" or "u" signifying that this sort key
sequence must have Unique keys; "D" or "d" indicating that this sort key
sequence may have Duplicate keys. "U" is the default for the first sort key
sequence defined; "D" is not valid for the first sort key sequence (it must be
unique). "D" is the default for all other sort key sequences if not specified. The
colon (*:") is required in the syntax.

specifies the logical disk directory that contains this file. VValid values are 0
through 35.

is the program line number or label to branch to if this directive produces an
error.

is a programmer-defined error code. Valid values are positive or negative whole
numbers.

The values specified for sort-name, sortdef, and mode must contain constants. The sort-name
and mode options are strings that must be enclosed in quotes.

An MSORT or TISAM file can have multiple sort key sequences. Each sort key sequence
can be made up of multiple segments (up to 16 each). Unlike DIRECT files, the segments
that make up all keys must be contained within the actual data record on file.

7

Copyright © 2013 Thoroughbred Software International, Inc.

The MSORT and TISAM directives need only define a single sort key sequence. The
ADDSORT directive provides for the addition of more sort key sequences, and the
REMSORT directive provides for the deletion of specific sort key sequences.

The key structure that is used for all input/output operations is specified by the SRT=1/0
option with [PJREAD and [PJEXTRACT directives. If not specified, the default SRT is the
first, or primary, sort key sequence.

Sort key sequences are defined with the sortdef1,2,n parameters indicated in the above
syntax. Each sort key sequence may contain multiple segments (up to 16 segments) and those
segments may overlap one another. Syntax for a sort key sequence is shown by:

|[segdefl [+ segdef2 [... + segdefn]]]

segdefl,2,n is composed of field, offset, length, and ordering data, so that expanding a
segdef looks like:

[[field-num:Joffset-num:key-length[:sort-order] |

field-num is an integer from 0 to the number of fields in a data record (not
to exceed 255). A field is defined as a string of data ended with
the field separator code $8A$ (system variable "SEP"). 0
specifies that the entire data record is to be considered as the
field and that field separators should be ignored. 1 signifies the
first field; 2, the second; etc. If not specified, O (entire record) is
assumed. Field-num is only valid for MSORT files, and is
ignored for TISAM files.

offset-num is an integer from 1 to the length of the field or record in bytes
signifying the beginning byte position within the field for this
key segment.

key-length is an integer from 1 to 144 specifying the length, in bytes, of
this key segment. If a length is specified that is longer than the
field contains (starting at offset-num), the remaining byte
positions is set to null or binary zero. The sum of all
key-lengths must not exceed 144.

sort-order is a single character designating the sorting order for this key
segment: "D" or "d" indicates descending order; "A" or "a"
indicates ascending order. If not specified, ascending is
assumed.

EXAMPLES

[ADDSORT "TEST", [1:2:5] + [3:16:6] + [1:3:2:"D"] :"U", 3 |

creates a new secondary key for the MSORT file named "TEST" on logical disk directory
number "3"; the new secondary key structure for each record contains three key segments:

8

Copyright © 2013 Thoroughbred Software International, Inc.

segment 1 starts at the 2nd byte of the 1st field in the record and is 5 bytes long.
segment 2 starts at the 16th byte of the 3rd field in the record and is 6 bytes long.

segment 3 starts at the 3rd byte of the 1st field in the record, is 2 bytes long, and the sort
order is descending.

Key segment 1 and 3 overlap; keys in this sort sequence must be unique.
SEE ALSO

DIRECT, ERASE, FILE, INDEXED, INITFILE, MSORT, REMSORT, SERIAL, SORT,
TEXT and TISAM directives

9

Copyright © 2013 Thoroughbred Software International, Inc.

=ALL
Equal Repeated Character

This string function provides a temporary string variable with a preset value. It can only be used in the
condition of an IF directive or WHILE/WEND directive.

[=ALL string-value

string-value is any string whose first character is used in the comparison of the IF directive.
REMARKS

This function is a combination of the equal sign and the word "ALL". There is no valid
combination for other operators, such as not equal, and the word "ALL".

EXAMPLES

[IF STRING_VALUE$ = ALL A"

tests STRING_VALUES to see if it contains all "A" characters, regardless of the length of
STRING_VALUES.

[IF STRING_VALUE$ <> ALL "B"

generates a syntax error (ERR=20) since the equal sign is the only valid operator with the
word "ALL".

SEE ALSO

IF/THEN/ELSE/FI and WHILE/WEND directives

10

Copyright © 2013 Thoroughbred Software International, Inc.

ATH

ASCII to Hexadecimal

This string function converts a string containing ASCII characters into a hexadecimal code in half-byte
representation, right justified. The valid ASCII characters are the numbers 0 through 9 and letters A
through F. Periods, commas, and plus or minus signs are not permitted in the string expression.

[ATH (string-value [,ERR=Iine-ref|,ERC=error-code]) |

string-value is a string composed of the characters "0" through "9 and "A" through "F"
(30 through $39% and 41 through $469).

line-ref is the program line number or label to branch to if this directive produces an
error.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

Every two ASCII characters generate a single hexadecimal code, so that the resultant string is
half as long as the input string. If an odd number of characters are used in string-value, the
function assumes 0 is the first character in order to make an even-numbered string.

If string-value contains ASCII characters other than the valid characters (0 through 9 and A
through F), an ERR=26 results.

This function allows the storage of integer numeric data in less bytes than its string
representation.

The reverse of ATH is the HTA function.

EXAMPLES

|[ATH ("'123456789ABCDEF'™)

returns the string $0123456789ABCDEFS$.

[ATH ("'2A™)

returns the string $2A$ which is the character "*"'.
SEE ALSO

HTA function

11

Copyright © 2013 Thoroughbred Software International, Inc.

AND
Logical AND

This string function returns the logical AND, bit-by-bit, of two string expressions of equal length.

[AND (string-valuel, string-value2 [,ERR=line-ref],ERC=error-code])

string-valuel,2 are any strings of equal length.

line-ref is the program line number or label to branch to if an error is produced by
this function.
error-code is a programmer-defined error code. Valid values are positive or negative
whole numbers.
REMARKS
If string-valuel and string-value2 do not contain the same number of characters, an ERR=17
results.
EXAMPLES

[AND ("*ABCdef", $DFDFDFDFDFDF$)

returns the string "ABCDEF", converting all lowercase characters to uppercase.

[AND (A$, DIM (LEN (A$), $7F$)) |

returns a string with the upper bit in each byte cleared; this is necessary in converting some
8-bit ASCII code to 7-bit ASCII characters.

SEE ALSO

IOR, NOT and XOR functions

12

Copyright © 2013 Thoroughbred Software International, Inc.

API

Interface to the Microsoft Windows API

This directive enables a Thoroughbred Basic program to call functions from the Microsoft Windows
application-programming interface (API).

[API(Tibrary$, function$[, argument-1, . . ., argument-n]) |
library$ is the name of a library.

function$ is the name of a function.

argument is an argument that will be passed to the function. For more information on how

arguments are passed, please refer to the following section.
REMARKS
The Thoroughbred Basic Environment for Windows requires that Microsoft Win32s be
installed if the Microsoft environment is not a 32-bit system. For example, if you plan to use
the API directive in Microsoft Windows 3.1, you must have Win32s installed.

The API directive can return a string or number, depending on context.

API functions require arguments to be passed by reference or passed by value:

All strings are passed by reference.

All numeric constants are passed by value.
» Numeric variables are passed by reference.
» Expressions are evaluated then passed by value.

» To pass a variable by value, you must add 0 as part of the argument. For example, N+0
passes the numeric variable N by value.

The following types of functions are not supported:

» Functions that require callback functions, such as timers or enumerators.
» Functions that require structures.

» Third-party libraries that require real numbers.

Sample programs that include multiple API calls are included in the Thoroughbred Basic
Environment for Windows software.

13

Copyright © 2013 Thoroughbred Software International, Inc.

EXAMPLES

AP1(*"User32", " GetFocus')

A
B = API(*"User32","ShowWindow' ,A+0,2)

returns the window handle as an integer, then displays the window in minimized state.

DIM B$(256)
B = API("'User32","GetWindowText" ,A+0,B$,LEN(BS))

puts the window text in BS.

SEE ALSO

Information on the Microsoft Windows API available from Microsoft or other publishers

14

Copyright © 2013 Thoroughbred Software International, Inc.

ARG
Arguments for Thoroughbred Basic Startup

This string function returns the individual argument specified from the operating system command that
was issued to start this Thoroughbred Basic task.

[ARG (numeric-value [,ERR=Iine-ref],ERC=error-code])

numeric-value is a positive integer, zero-based, specifying which positional parameter this
function is to return.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

If numeric-value exceeds the number of parameters minus one, an ERR=17 results.

EXAMPLES

If you start Thoroughbred Basic with the following command:

|./basic T5 data IPLWIN |

then the ARGC variable will have a value of 4. To see what you entered you can execute the
following Thoroughbred Basic statement:

00010 FOR X = 0 TO ARGC - 1 ; PRINT ARG(X) ; NEXT X |

This statement will print:

./Basic
T5

data
IPLWIN

SEE ALSO

ARGC system variable

15

Copyright © 2013 Thoroughbred Software International, Inc.

ARGC

Argument Count for Thoroughbred Basic Startup

This numeric system variable returns the number of arguments specified in the operating system
command that was issued to start this Thoroughbred Basic task.

[ARGC

REMARKS

This function is generally available starting with release level 8.1B2.

EXAMPLES

If you start Thoroughbred Basic with the following command:

|./basic T5 data IPLWIN

then the ARGC variable will have a value of 4. To see what you entered you can execute the
following Thoroughbred Basic statement:

[00010 FOR X = O TO ARGC - 1 ; PRINT ARG(X) ; NEXT X

This statement will print:

./Basic
T5
data
IPLWIN

SEE ALSO

ARG function

16

Copyright © 2013 Thoroughbred Software International, Inc.

ASC

Returns Integer Value of ASCII Character

This numeric function returns the unsigned integer value of a single ASCII character.

[ASC (string-value [,ERR=line-ref|,ERC=error-code])

string-value is any string.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

The string-value may be of any valid length but only the integer value of the first character is
returned.

Note that the DEC function is an extension of the ASC function. ASC operates on only a
single character while DEC can operate on a character string.

The reverse of ASC is the CHR function, which can convert an integer value into a
corresponding ASCII character.

If string-value is null, an ERR=46 results.

EXAMPLES

[ASC ("A™)

returns the numeric value 65 (decimal code for the character A).

[ASC (S$)

If S$="BUG", returns the value 66 since only the first character is evaluated.

[CET X=ASC_(R$,ERR=8000) |

If R$="" (an empty or null string), an error is produced and control is given to statement
8000.

SEE ALSO

DEC and CHR functions

17

Copyright © 2013 Thoroughbred Software International, Inc.

ASN
Arc Sine

This numeric function returns the arc sine of an angle in radians.

[ASN (numeric-value [,ERR=line-ref|,ERC=error-code])

numeric-value is any valid number from -1.0 through +1.0.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

This function returns a number that ranges from -1.57 through +1.57 (-Pi/2 to +Pi/2).

Note that ASN and SIN are reverse functions; that is:

ASN (SIN(X))=x
SIN (ASN(X))=x

If numeric-value exceeds the range indicated, an ERR=40 results.

EXAMPLES

[ASN (0)

The result is 0.

[ASN (1)

The result is 1.57 (i.e., Pi/2).

[ASN (D)

The result is -1.57 (i.e., -Pi/2).

These examples assume PRECISION 2.
SEE ALSO

SIN function

18

Copyright © 2013 Thoroughbred Software International, Inc.

ATH

ASCII to Hexadecimal

This string function converts a string containing ASCII characters into a hexadecimal code in half-byte
representation, right justified. The valid ASCII characters are the numbers 0 through 9 and letters A
through F. Periods, commas, and plus or minus signs are not permitted in the string expression.

[ATH (string-value [,ERR=Iine-ref|,ERC=error-code]) |

string-value is a string composed of the characters "0" through "9 and "A" through "F"
(30 through $39% and 41 through $469).

line-ref is the program line number or label to branch to if this directive produces an
error.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

Every two ASCII characters generate a single hexadecimal code, so that the resultant string is
half as long as the input string. If an odd number of characters are used in string-value, the
function assumes 0 is the first character in order to make an even-numbered string.

If string-value contains ASCII characters other than the valid characters (0 through 9 and A
through F), an ERR=26 results.

This function allows the storage of integer numeric data in less bytes than its string
representation.

The reverse of ATH is the HTA function.

EXAMPLES

|[ATH ("'123456789ABCDEF'™)

returns the string $0123456789ABCDEFS$.

[ATH ("'2A™)

returns the string $2A$ which is the character "*"'.
SEE ALSO

HTA function

19

Copyright © 2013 Thoroughbred Software International, Inc.

ATN
Arc Tangent

This numeric function returns the arc tangent of an angle in radians. In other words, ATN returns the
angle, in radians, whose tangent is given.

[ATN (numeric-value [,ERR=Iine-ref],ERC=error-code])

numeric-value is any valid number from +/-.9999999999999E-57 through
+/-.9999999999999E +58.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

This function returns a number that ranges from -1.57 through +1.57 (-Pi/2 to +Pi/2).

Note that ATN and TAN are reverse functions; that is:

ATN (TANGO)=x
TAN (ATN(X))=x

EXAMPLES

[ATN (0)

The result is 0.

[ATN (D)

The result is .79 (i.e., Pi/4).

[ATN (-100)

The result is -1.56.
These examples assume PRECISION 2.
SEE ALSO

ATQ and TAN functions

20

Copyright © 2013 Thoroughbred Software International, Inc.

ATQ
Arc Tangent of a Quotient

This numeric function returns the arc tangent of a quotient consisting of two numeric expressions
representing angles in radians.

[ATQ (numeric-valuel,numeric-value2 [,ERR=line-ref],ERC=error-code]) |

numeric-valuel,2 are numbers from +/-.99999999999999E-57 through
+/-.99999999999999E +58.

line-ref is the program line number or label to branch to if an error is produced by
this function.

error-code is a programmer-defined error code. Valid values are positive or negative
whole numbers.

REMARKS
This function returns a value that ranges from -3.14 through 3.14 (-Pi to +Pi).

EXAMPLES

[ATQ (0,-1)

The result is 0.

[ATQ (2,-4)

The result is 2.68.

[ATQ (6.6)

The result is 0.79.

[ATQ (0,2)

The result is 0.
These examples assume PRECISION 2.
SEE ALSO

ATN and TAN functions

21

Copyright © 2013 Thoroughbred Software International, Inc.

ATR

Returns Attribute Value of a Data Element

This string function returns the attribute value of a data element from a format currently in memory.

[ATR(name$, elem-number, attr-number [,ERR=Iine-ref],ERC=error-code])

name$ is a string that specifies the name of a format or data name.

elem-number is an integer, which represents the data element number in the format whose
attributes are to be referenced. The element number must be O if a data name is

specified.

attr-number is any integer from 0 through 28, which determines the attribute value to be
returned.

line-ref is the program line number or label to branch to if an error is produced.

error-code isa rl))rogrammer-defined error code. Valid values are positive or negative whole
numbers.

REMARKS

Specifying an elem-number of 0 and an attr-number of O retrieves the number of data elements
in the format.

The attempt to specify an attr-number other than the positive integers from 0 through 28
results in an ERR=17.

The attempt to reference an invalid format/data name results in an ERR=17.

The attempt to reference a format name that the data dictionary or the current program does
not recognize results in an ERR=161.

The attempt to reference a data name, either by name or by element number, that does not
exist in the format's data element table results in an ERR=163.

The attempt to reference a format name without a data element number results in an ERR=17.
The attempt to reference a data name with a data element number results in an ERR=17.

Starting with release 8.2.2, this string function will return the appropriate mask for any data
element that has a non-Julian date, phone number, or Social Security number as an attribute.

22

Copyright © 2013 Thoroughbred Software International, Inc.

The following table describes the attribute value retrieved for a given attribute number:

Attr-number Attribute value

0 Data element value

1 Length

2 Precision

3 Numeric type

4 Field separator

5 Type input

6 Pad

7 Date

8 Audit

9 Post-process procedure

10 Special prompt

11 Preset value

12 Valid value

13 Delete value

14 Security value

15 Pre-process procedure

16 Y/N value

17 Key indicator

18 Occurrence value

19 Documentation code

20 Position in format

21 Data element name

22 Occurrence field spectator

23 Print length (no comma mask)

24 Print length (comma mask)

25 Mask with no commas

26 Mask with commas

27 Data description

28 Language code

29 Element number of a data name
23

Copyright © 2013 Thoroughbred Software International, Inc.

Starting with release 8.3.0, specifying a format name and a zero for the element number for
the following attribute numbers will return all entries of the specified attribute for the format:

Attr-number Attribute value

4 Field separator

8 Audit

9 Post-process procedure
10 Special prompt

11 Preset value

12 Valid value

13 Delete value

14 Security value

15 Pre-process procedure
21 Data element name
27 Data description

EXAMPLES

The following examples assume that a format named "DNFFMT" has been successfully
INCLUDEG.

[LET A$=ATR('#DNFFMT",1,1);

retrieves the length attribute of the first data element of the format "DNFFMT".

[LET A$=ATR('#DNFFMT.DATA-ELEMENT-1",0,1);

retrieves the length attribute of the data element "DATA-ELEMENT-1" of the format
"DNFFMT".

LET F$="#DNFFMT"
LET A$=ATR(F$,0,1);

results in an ERR=17 because neither a data name nor an element number were specified.

LET D$="#DNFFMT .DATA-ELEMENT-1"";
LET A$=ATR(D$,1,5);

results in an ERR=17 because a data element's name, "DATA-ELEMENT-1", and number, 1,
were both referenced.

[N = NUM (ATR(F$,0,0))

retrieves the number of data elements contained in the format #DNFFMT.

[SEP$=ATR("'#DNFFMT",0,4)

retrieves the field separator elimination table for the format "#DNFFMT".

24

Copyright © 2013 Thoroughbred Software International, Inc.

[NAM$=ATR("'#DNFFMT",0,21)

retrieves all data element names for the format "#DNFFMT".
SEE ALSO

FORMAT INCLUDE, FORMAT INIT, FORMAT DEFAULT, and FORMAT DELETE
directives

25

Copyright © 2013 Thoroughbred Software International, Inc.

BEGIN
Begin Program Environment

This directive initializes certain program parameters. It is the most comprehensive in a series of similar
directives that includes CLEAR, END, RESET, and STOP.

[BEGIN [EXCEPT variable-name [,variable-name...]]

variable-name is the name of a specific numeric or string variable. This variable is not cleared
to 0 or null by the BEGIN directive.

REMARKS
This directive:
1. Closes all files and devices.
2. Initializes all variable values to 0 or null except those listed in the EXCEPT clause.

3. Clears the Return Address Stack (used to hold address values for certain directives, i.e.,
FOR/NEXT, RETURN, RETRY, etc.).

4. Sets value of ERR and CTL to 0.

5. Sets PRECISION to 2, ends FLOATING POINT.

6. Sets SETERR and SETESC to 0.

7. Does not set the program execution pointer to the first statement.

8. Does not DROP public programs, which have been made resident by an ADDR directive.

9. Does not DRORP files, which have been added to the File Control Table by an ADD
directive.

10. Does not affect system variables such as TIM (Time) and DAY (Date).
11. Does not terminate a SETTRACE directive.

EXAMPLES

[BEGIN

affects the program parameters as detailed above, setting all numeric variables to 0 and all
string variables to null.

26

Copyright © 2013 Thoroughbred Software International, Inc.

[BEGIN EXCEPT STRING_1$, NUM_A, Al$

affects the program parameters as detailed above, but leaves STRING_1$, NUM_A$, and
A1$ unchanged.

SEE ALSO

CLEAR, END, RESET and STOP directives

27

Copyright © 2013 Thoroughbred Software International, Inc.

BIN
Binary

This string function converts an integer into its equivalent binary data.

[BIN (numeric-value, result-length [,ERR=line-ref],ERC=error-code])

numeric-value is an integer that ranges from 0 through +/-.99999999999999E+141.

result-length s an integer from 1 through 32600 that specifies the length in bytes of the

result.

line-ref is the program line number or label to branch to if an error is produced by this
function.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.

REMARKS

This function converts a signed or unsigned integer into its binary code equivalent,
right-justified, sign-extended, in the number of bytes indicated.

The reverse of this function is the DEC Function, which converts binary data into its integer
equivalent.

The BIN Function cannot operate on fractional numbers, but can operate on negative
numbers. Negative numbers are converted to their twos-complement form.

You can specify more bytes in the result-length than necessary; any extra bytes have the sign
extended. For positive numbers, the excess bytes carry zero bits (00); for negative
numbers, the excess bytes carry one bit (FF). For example:

HTA(BIN(65,3))=$000041%
HTA(BIN(-65,3))=$FFFFBF$.

It takes only 59 bytes to contain the largest possible numeric-value that can be expressed in
Thoroughbred Basic whether numeric-value is negative or positive.

If numeric-value is not an integer, an ERR=26 results.
If result-length is greater than 32600 or less than 1, an ERR=41 results.

If the result-length is too small to contain the binary code representation of numeric-value, an
ERR=40 results.

28

Copyright © 2013 Thoroughbred Software International, Inc.

EXAMPLES

[BIN (65,1)

returns the ASCII character for an "A", which is the hexadecimal code 41 or the binary
code 0100 0001.

[LET X$ = BIN (X,1)

If X=65, this statement returns the same value as above and assigns it to X$.

[BIN (16706,2)

returns the ASCII characters for "AB", which is the hexadecimal code 4142 or the binary
code 0100 0001 0100 0010.

SEE ALSO

DEC function

29

Copyright © 2013 Thoroughbred Software International, Inc.

BREAK

Abort Loop Control

This directive causes transfer of program execution to the statement after a NEXT or WEND.

[BREAK

REMARKS
This directive is generally available starting with release level 8.8.0.

For nested loops, this directive will transfer program execution to the statement after the
innermost NEXT or WEND directive.

If a BREAK is executed without a FOR/NEXT or WHILE/WEND loop on the stack, an
ERR=28 results.

If this directive is used in Thoroughbred Basic Console Mode, an ERR=45 results.

EXAMPLES

01000 FOR MON = 1 TO 12;
IF SALES[MON] = O
BREAK
FI;
TOTSALES = TOTSALES + SALES[MON];
NEXT MON;
PRINT TOTSALES;

prints the cumulative total of the SALES array, aborting the execution of the FOR/NEXT
loop if one of the array elements is set to 0.

01000 MON = 1;

WHILE MON <= 12;

IF SALES[MON] = 0O

BREAK

FI;

TOTSALES = TOTSALES + SALES[MON];
WEND;
PRINT TOTSALES;

prints the cumulative total of the SALES array, aborting the execution of the WHILE/WEND

loop if one of the array elements is set to 0.

30

Copyright © 2013 Thoroughbred Software International, Inc.

01000 FOR I1=10 TO 5000;
FOR J=2 TO I1-1
IF MOD(I,J)=0
BREAK
ELSE
IF 1=J+1
PRINT 1, ',
Fi
FI;
NEXT J;
NEXT 1

prints all prime numbers from 10 to 5000.
SEE ALSO

CONTINUE, FOR/NEXT and WHILE/WEND directives

31

Copyright © 2013 Thoroughbred Software International, Inc.

BSZ
Bank Size

This numeric function returns the number of bytes available in the specified memory bank. This number
represents total available bank memory and is reduced only by variable space.

[BSZ (bank-num [,ERR=Iine-ref],ERC=error-code]) |

bank-num is the integer number of the memory bank. The only valid value is 1.

line-ref s the program line number or label to branch to if an error is produced by this
function.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.

REMARKS
This value is dynamic. It changes as memory allocation changes during processing.

If bank-num is negative, zero, or greater than the number of memory banks configured on
this system, an ERR=41 results.

Each task occupies its own memory bank, which is always referred to as memory bank 1 and
is the only bank that the task can access. Bank-num values of 2 through 7 do not generate an
error, but return a value of zero.

EXAMPLES

[LET B=BSZ (1)

If B=2048, then there are 2048 bytes of available memory in memory bank 1.
SEE ALSO

DSZ and PSZ variables

32

Copyright © 2013 Thoroughbred Software International, Inc.

CALL

Call a Public Program

This directive executes a public program, passing and receiving data, without disturbing the
environment of the main program, which CALLed the public program.

[CALL program-name [,ERR=line-ref],ERC=error-code] [,value-list]

program-name is a string of characters that names the public program and its program

file.

line-ref is the program line number or label to branch to if this directive produces
an error.

value-list is a list of numeric and/or string variables and constants passed to the

public program.

error-code is a programmer-defined error code. Valid values are positive or negative
whole numbers.

REMARKS

This directive searches the opened object libraries, then the logical disk directories until it finds
the public program file specified by program-name. It loads the file into memory and begins
execution of the public program at its first program line.

Use of the ADDR directive saves the overhead time required to locate and load the public
program when CALLed.

When a CALLed public program is completed, execution of the calling program is
transferred to the statement following the CALL directive.

The CALL directive can be executed from a public program or a non-public program. For
example, a public program can CALL another public program, which can call another public
program up to 127 levels of nesting.

The optional value-list contains values (constants or variables) that are used to transfer
selected data to the public program and to designate which variables receive data back from
the public program when it returns.

The optional value-list is passed to the public program when execution encounters an
ENTER directive in the public program.

Any return variables are set when the public program executes an EXIT directive.

33

Copyright © 2013 Thoroughbred Software International, Inc.

The variable names do not have to be the same in the CALL directive and the public
program’'s ENTER directive, but they must match in order sequence and type (see
EXAMPLES below).

If program-name cannot be found, an ERR=12 results.
If program-name is not a program file, an ERR=17 results.

If the value-list in the CALL directive does not match the ENTER directive in the public
program, an ERR=36 or ERR=42 results in the public program.

Numeric and string arrays used in the CALL/ENTER linkage must use the ALL option to
pass the full array if the CALLing program expects the public program to change the data in
the array. Single-element array values can be passed to the public program but changes made
within the public program are not sent back to the CALLing program. Similarly, substring
references are not sent back to the CALLing program.

EXAMPLES

[CALL "PUBLIC1"

This example loads and executes the PUBLIC1 public program. If PUBLIC1 has no ENTER
statement then no data is passed back and forth between these programs. If PUBLIC1 has an
ENTER statement with no variable-list, then all variables from the CALLing program are
available to the PUBLIC1 public program.

3 = - 3\ y 3 0, 0 3 3 3 +
CALL A$, ERR=CALL-ERROR,A,D[ALL],D%,E%[1],C$," " XYZ" X$+"1"

If A$="PUBLIC1", this has the same effect as the first example. If an error occurs while
processing this directive the program branches to the CALL-ERROR line label.

This example shows that the CALL is passing 7 items in its value-list: a numeric variable, a
numeric array, an integer variable, an integer array element, a string variable, a string
constant, and a string expression. The ENTER directive in the public program must have a
variable-list of 7 variables that match the order sequence and type. If the public program's
variable-list does not correctly match the CALLing program's value-list an ERR=36 or
ERR=42 results.

SEE ALSO

ADDR, ENTER, and EXIT directives

34

Copyright © 2013 Thoroughbred Software International, Inc.

CDN

Returns Current Date in SQL Numeric Format

This system variable returns the current date and time in SQL numeric format, which is days and
decimal days since 01-JAN-0001, with enough significance to detect fractions of a second.

[CDN

REMARKS
This system variable is a numeric value and may be used in numeric expressions.

EXAMPLES

[LET TODAYS_DATE_NUMBER = CDN

At noon on 07-JUN-1989, TODAYS_DATE_NUMBER contains the value 726262.5
(9:00AM that same day is 726262.375).

[LET DUE_DATE$ = NTD(CDN+15)

shows some of the usefulness of CDN in business applications. Assuming the same date for
today as above, this LET directive causes DUE_DATES to contain the value:

""22-JUN-1989 12:00:00"
The SQL date format is corrected for leap years, including century multiples.
SEE ALSO

DTN and NTD functions
CDS system variable

35

Copyright © 2013 Thoroughbred Software International, Inc.

CDS

Returns Current Date in SQL String Format

This system variable returns the current date and time in SQL string format.

[CDS

REMARKS
This system variable is a string value and may be used in string expressions.

EXAMPLES

[LET TODAYS_DATE$ = CDS

At noon on 07-JUN-1989, TODAYS_DATES contains the value:
"07-JUN-1989 12:00:00""
The SQL date format is corrected for leap years, including century multiples.
SEE ALSO

DTN and NTD functions
CDN system variable

36

Copyright © 2013 Thoroughbred Software International, Inc.

CGV

Common Global String Variables

This string function is used to create and maintain global string variables. Global variables share data
among all programs, including public programs, and are not affected by the BEGIN, CLEAR, and
START directives.

CGV (string-value-1 [, string-value-2]
[,ERR=1ine-ref],ERC=error-code])

string-value is any string. The "ILIST" option, which is discussed below, can be specified
for string-value-1.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

This function allows you to manipulate a global variable by creating a global variable name,
assigning a value, retrieving the current value, or deleting the global variable name. You can
also list all defined global variables.

The CGV function is used in an assignment statement to accomplish the global variable
operation.

The global variable name is limited to a maximum of 32 characters. If you exceed this limit,
an ERR=46 results.

The length of a global variable name plus the length of the variable's string value is limited to
64,997. The maximum number of global variables is limited to 65,000. If an operation would
exceed either of these limits, an ERR=32 results.

To create a new global variable, string-value-1 and string-value-2 must both be specified.
String-value-1 specifies the global variable name and string-value-2 specifies the initial string
value assigned to the variable. (If a global variable with the same name already exists, it is
overwritten with the new string value.) If the first character of the global variable name is an
exclamation mark ("!"), the global variable is defined as a protected global variable
(protected from certain delete operations). When you create a new global variable, it is added
to the end of the global variable storage with the new value assigned.

37

Copyright © 2013 Thoroughbred Software International, Inc.

To change an existing global variable, string-value-1 and string-value-2 must both be
specified. String-value-1 specifies the global variable name and string-value-2 specifies the
new string value assigned to the variable. If the global variable name did not exist, it is
created. When you change an existing global variable, the global variable is repositioned at
the end of the global variable storage.

To retrieve the current value of a global variable, string-value-1 must specify the global
variable name and string-value-2 is not specified. If the global variable name does not exist,
an ERR=49 results.

To delete an existing global variable, string-value-1 must specify the name of one of the
following delete operations.

e The !ICLEARALL delete operation removes all unprotected global variables. Do not specify
string-value-2. If string-value-2 is specified, an ERR=49 results.

» The ICLEAR delete operation removes a protected or unprotected global variable name
specified in string-value-2. This is the only delete operation that can remove a protected
global variable. If string-value-2 is not specified or specifies a nonexistent global variable,
an ERR=49 results.

» The ICLEARTO delete operation removes the unprotected global variable specified in
string-value-2 and all other unprotected global variables created or changed since the last
operation on the specified global variable. (It deletes unprotected global variables from the
global variable storage starting at the latest global variable and going back to the specified
global variable.) If string-value-2 is not specified or specifies a nonexistent global variable,
an ERR=49 results. If string-value-2 specifies a protected variable, the system automatically
uses the next most recent unprotected global variable.

To list all of the current global variables, specify "!LIST" for string-value-1. Each name will be
retrieved in chronological order. Names will be separated by the 00 character.

EXAMPLES

[LET A$ = CGV ("'CUST","709"™) |

creates a global variable named CUST and assigns it the value "709". The value "709" is also
assigned to A$.

38

Copyright © 2013 Thoroughbred Software International, Inc.

[LET A$ = CGV ("'CUST","805™)

changes the value in the CUST global variable to "805". The value 805" is also assigned to
A$.

[LET A$ = CGV ("CUST™)

assigns A$ the current value of the CUST global variable.

[LET A$ = CGV ("ICUST",C$)

creates a protected global variable named !CUST and assigns it the value in C$. The value in
C$is also assigned to A$.

[LET A$ = CGV ("ICLEAR™,"INVENTORY_NUM™)

deletes the global variable named INVENTORY_NUM. A$ is used as a dummy variable; a
null string is returned to A$.

[LET A$ = CGV ('ICLEAR™,"!VENDOR™)

deletes the protected global variable named 'VENDOR. A$ is used as a dummy variable; a
null string is returned to A$.

[LET A$ = CGV (""ICLEARALL™)

deletes all unprotected global variables ('CUST is not deleted). A$ is used as a dummy
variable; a null string is returned to AS.

[LET A$ = CGV ('"!CLEARTO","CUST")

deletes all unprotected global variables starting at the latest global variable and going back to
and including the CUST global variable. A$ is used as a dummy variable; a null string is
returned to AS.

SEE ALSO

LET directive

39

Copyright © 2013 Thoroughbred Software International, Inc.

CHR

Converts Integer to ASCII Character

This string function converts an integer into its equivalent ASCII character.

[CHR (numeric-value [,ERR=line-ref|,ERC=error-code])

numeric-value is an integer. Valid values are 0 through 255.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

The reverse of this function is the ASC function, which converts an ASCII character into its
equivalent integer.

If numeric-value is not an integer, an ERR=26 results.
If numeric-value is negative or greater than 255, an ERR=41 results.

EXAMPLES

[CHR (X)

If X=65, returns the character "A".

[CHR (NUM (NUMBER_STRINGS$)) |

If NUMBER_STRING$ contains "65", this returns the same character as the first example.

[CHR (13) |

returns the character for carriage return.

[LET P$=CHR (2*X+5)

If X=30, assigns P$ the value "A".
SEE ALSO

ASC function

40

Copyright © 2013 Thoroughbred Software International, Inc.

CLEAR

Clear Program Environment

This directive initializes certain program parameters. It accomplishes actions similar to BEGIN, but
does not affect input/output channels. It is part of a series of similar directives including BEGIN, END,
RESET, and STOP.

[CLEAR [, EXCEPT variable-name [,variable-name...]]

variable-name is the name of a numeric or string variable. This variable is not cleared to 0 or
null by the CLEAR directive.

REMARKS
This directive:
1. Initializes all variable values to 0 or null except those listed in the EXCEPT clause.

2. Clears the Return Address Stack (used to hold address values for certain directives, i.e.,
FOR/NEXT, RETURN, RETRY, etc.).

3. Sets value of ERR and CTL to 0.

4. Sets PRECISION to 2, ends FLOATING POINT.

5. Sets SETERR and SETESC to 0.

6. Does not close any files or devices.

7. Does not set program execution pointer to the first program line.

8. Does not DROP public programs, which have been made resident by an ADDR directive.

9. Does not DRORP files, which have been added to the File Control Table by an ADD
directive.

10. Does not affect system variables such as TIM (Time) and DAY (Date).
11. Does not terminate a SETTRACE directive.

EXAMPLES

[CLEAR

affects the program parameters as described above, setting all numeric variables to 0 and all
string variables to null.

41

Copyright © 2013 Thoroughbred Software International, Inc.

[CLEAR EXCEPT STRING_1$, NUM_A, A1$, ARRAY(ALL)

affects the program parameters as detailed above, but leaves STRING_13$, NUM_A, AlS,
and ARRAY (numeric array) unchanged.

SEE ALSO

BEGIN, END, RESET and STOP directives

42

Copyright © 2013 Thoroughbred Software International, Inc.

CLEAR ERC

Clear Error Condition Variable

This directive resets the ERC system variable to 0, its initial value.

[CLEAR ERC

REMARKS

You can use this directive in tandem with the ERC system variable. In general you will use
ERC=numeric-value to specify an error code; after testing for the error, you can use CLEAR
ERC to reset the value of ERC to 0.

This directive has no effect on the ERR system variable.

EXAMPLES

OPEN (1, ERC=3) "NOFILE"
IF ERC=3

PRINT ERC
CLEAR ERC

If NOFILE does not exist, the output will be 3. After CLEAR ERC is executed the value
contained in ERC will be reset to 0.

SEE ALSO

ERC system variable
SET ERC directive

43

Copyright © 2013 Thoroughbred Software International, Inc.

CLOSE

End I/O Channel Operations

This directive terminates operation on a designated input/output channel and removes the effects of any
EXTRACT or LOCK on that input/output channel.

[CLOSE (channel [,ERR=line-ref],ERC=error-code])

channel isan integer from 1 through 32764, which specifies the channel of an OPEN file
or device; or 0, which specifies all channels except 0.

line-ref is the program line number or label to branch to if this directive produces an
error.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.

REMARKS
Channel values above 14 are generally available starting with release level 8.0.

Channel 0 is reserved for the terminal and keyboard of the individual task or the inter-task
communication channel for ghost tasks (see the section on Ghost Tasks in the chapter on
Program Control in Volume 1). Beginning with release level 8.0, CLOSE (0) results in
CLOSEing all OPEN files on channels 1 through 32764.

A file or device remains OPEN, and its assigned input/output channel is unavailable for other
use until it is CLOSEd by the BEGIN, CLOSE, END, or STOP directives.

The CLOSE directive automatically UNLOCKS a file that has been LOCKed by the current
task and releases any EXTRACTed records.

An OPEN printer device is unavailable to other tasks until CLOSEd. An OPEN file can be
accessed by other tasks, unless that file has been reserved for this task by the LOCK
directive.

All OPEN files and devices in a task are CLOSEd by the BEGIN, CLOSE, END, or STOP
directives.

CLOSEing an input/output channel that has already been CLOSEd does not cause an error.
If channel is negative, non-integer, or greater than 32764, an ERR=41 results.
For information on how to use the CLOSE directive to finish a DDE conversation when you

use the Thoroughbred Environment under Microsoft Windows, please refer to the description
of the OPEN directive.

44

Copyright © 2013 Thoroughbred Software International, Inc.

EXAMPLES

[CLOSE (D)

closes the file or device OPEN on input/output channel 1.

[CLOSE (CHANNEL_NUMBER, ERR=7999)

If CHANNEL_NUMBER = 1, has the same effect as the first example and branches to
program line number or label 7999 if CHANNEL_NUMBER contained a negative number, a
non-integer, or a number greater than 32764.

SEE ALSO

LOCK, OPEN and UNLOCK directives

45

Copyright © 2013 Thoroughbred Software International, Inc.

CMASK
Foreign Currency Parameters

This system variable returns a string that contains the foreign currency parameters that are not defaults.

[CMASK

REMARKS
Every foreign currency parameter that is not a default is separated by a | ",
A null string is returned if all foreign currency parameters are set to their defaults.

EXAMPLE

SET CMASK ™.
SET CMASK "'$
C$=CMASK

C$ receives the value: . = ,|$=#".
SEE ALSO

SET CMASK directive

46

Copyright © 2013 Thoroughbred Software International, Inc.

COMMIT

Make Database Changes Permanent

This directive terminates a TRANSACTION BEGIN directive. All records that were changed in
between the TRANSACTION BEGIN and the COMMIT directive become permanent records.

[COMMIT [,ERR=line-ref],ERC=error-code]

line-ref is the program line number or label to branch to if an error is produced by this
function.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.

REMARKS
All 1/0 changes that were made to the various files become permanent.

On an error branch, you cannot retry the COMMIT directive. The error branch is taken when
something unusual has happened, such as a system error.

All record locks that were a part of the transaction process are released.

EXAMPLE

00010 TRANSACTION BEGIN
00020 CH1=UNT; OPEN(CH1) "MSORTFILE"
00030 CH2=UNT; OPEN(CH2) "DIRECTFILE"
00040 CLEAR ERC:
K$ = KEY(CH1);
READ RECORD(CH1) A$;
WRITE RECORD (CH2,KEY=K$,ERC=99) A$:
REMOVE(CH1, KEY=K$,ERC=99) ;
IF ERC
ROLLBACK
ELSE
COMMIT
FI

SEE ALSO

LOG CLOSE, LOG OPEN, ROLLBACK, and TRANSACTION BEGIN directives

a7

Copyright © 2013 Thoroughbred Software International, Inc.

CONTINUE

Next Iteration of a Loop Control

This directive causes the next iteration of a FOR/NEXT or WHILE/WEND loop to be executed.

[CONT INUE

REMARKS
This directive is generally available starting with release level 8.8.0.

For nested loops, this directive will cause the next iteration of the innermost FOR/NEXT or
WHILE/WEND loop to be executed.

If a CONTINUE is executed without a FOR/NEXT or WHILE/WEND loop on the stack, an
ERR=28 results.

If this directive is used in Thoroughbred Basic Console Mode, an ERR=45 results.

EXAMPLES

01000 FOR MON = 1 TO 12;
IF MON > 5 AND MON < 9
CONTINUE
FI;
TOTSALES = TOTSALES + SALES[MON];
NEXT MON;
PRINT TOTSALES;

prints the cumulative total of the SALES array not including the values in SALESI6],
SALES[7] and SALESI[8]. .

01000 MON = 1;
WHILE MON < 12;
IF MON > 5 AND MON < 9
MON = MON + 1;
CONTINUE
FI;
TOTSALES = TOTSALES + SALES[MON];
MON = MON + 1;
WEND;
PRINT TOTSALES;

prints the cumulative total of the SALES array not including the values in SALESI6],
SALES[7] and SALESI8].

SEE ALSO

BREAK, FOR/NEXT and WHILE/WEND directives

48

Copyright © 2013 Thoroughbred Software International, Inc.

COS
Cosine

This numeric function returns the cosine of an angle expressed in radians.

[COS (numeric-value [,ERR=line-ref|,ERC=error-code])

numeric-value is a number from 0 to 3.14 radians.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

This function returns a number in the range of +1.0 to -1.0 for numeric-values ranging from 0 to
3.14 (Pi) radians (0 to 180 degrees).

Note that COS and ACS are reverse functions; that is:

COS (ACS(X)) = x
ACS (COS(X)) = X
EXAMPLES
[COS (0)

The result is 1.

[COS (1.57)

The result is 0.

[COS (3.14)

The result is -1.
These examples assume PRECISION 2.
SEE ALSO

ACS function

49

Copyright © 2013 Thoroughbred Software International, Inc.

CPL
Compile Thoroughbred Basic Statement to Compiled Format

This string function converts a Thoroughbred Basic statement from interpretive format into compiled
format.

[CPL (string-value [,ERR=line-ref|,ERC=error-code]) |

string-value is a Thoroughbred Basic program line in interpretive format.

line-ref is the program line number or label to branch to if an error is produced by this
function. However, no known condition causes a branch to line-ref.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.

REMARKS

Thoroughbred Basic is an interpretive Business BASIC that maintains its source code in a
compressed, pseudo-compiled format. Compiling conserves space and increases speed of
execution.

When Thoroughbred Basic program lines are entered from the keyboard, the syntax is checked
when the programmer presses the Enter key. When program lines exist in an ASCI| file, this
function provides the ability to test each program line for syntax errors.

If the Thoroughbred Basic statement string being compiled contains a syntax error, a flag is set
(the third byte of the output string is set equal to $F3$), and when an attempt is made to execute
or list the output of this function, an execution error is returned. The fourth byte contains the
CHR of the error that occurred. The fifth and sixth bytes of the output string contain the
position in which the error was found.

The Thoroughbred Basic program line being compiled does not need a program line number
or label.

The compiled form of a Thoroughbred Basic statement may contain unprintable ASCII
characters, which can be converted to printable form with the HTA function

LST is the inverse of this function.

EXAMPLES

[CPL (%) |

If Q$ ="0100 LET X=3", returns a string which represents the compiled instruction to set the
numeric variable X to the integer 3 at program line number 100.

50

Copyright © 2013 Thoroughbred Software International, Inc.

[CPL_("100X=3")

returns the same string as the first example since both program lines are equivalent in
Thoroughbred Basic.

00100 Q$="0100 LET X$ = 3"
00110 C$=CPL(Q$)
00120 IF C$(3,1)=$F3%
E=ASC(C$(4,1)),
P=DEC(C$(5,2))-3,
L$=LST(C$);
PRINT "ERR =",E," AFTER POSITION",P;
PRINT "SB",L$(1,P),"SF",L$(P+1)

illustrates a way of testing program code for syntax errors. In the example above, Q$ contains
an invalid Thoroughbred Basic statement. The following messages will be displayed:

ERR = 20 AFTER POSITION 15
00100 LET X$ = 3

The second message line displays 3 as the invalid part of the statement. The numeral should
be enclosed by quotation marks (*3") for assignment to a string variable.

SEE ALSO

LST, PFL and PFP functions

51

Copyright © 2013 Thoroughbred Software International, Inc.

CPP

Compile Program

This string function returns compiled program lines for the given program-string, which contains
Thoroughbred Basic program lines in LIST format preceded by their lengths. It is useful in building
executable programs from ASCI|I strings of Thoroughbred Basic program lines.

[CPP (program-string [,ERR=Iine-ref|,ERC=error-code])

program-string is an uncompiled Thoroughbred Basic program in the format shown
below in the REMARKS section.

line-ref is the program line number or label to branch to if an error is produced by
this function.

error-code is a programmer-defined error code. Valid values are positive or negative
whole numbers.

REMARKS

This function primarily provides the ability to convert a formatted, listed program from its
ASCII character representation into an executable public program.

Starting with release 8.3.0, a program string containing formats and data names will have its
format and data name references validated against the data dictionary. Data name references
in a program string can only be validated if their respective formats are already INCLUDEG;
if not, the references will produce an error. Any errors that result from a program string's
format and data name references are saved to the ERRBUF system variable and the CPP
function results in an ERR=160.

52

Copyright © 2013 Thoroughbred Software International, Inc.

The format of program-string is as follows:

Byte(s) Description

1-8 Name of program
9-10 Length of first Thoroughbred Basic program line; unsigned binary
11-n First Thoroughbred Basic program line in listed format

Length and listed format repeat as necessary
The statements can be in any order.

If an attempt is made to use CPP on a program-string containing statements with identical
numbers or statements without a line number, an ERR=19 results.

If an attempt is made to use CPP on a program-string containing a duplicate label declaration,
an ERR=21 results.

If an attempt is made to use CPP on an invalid string, an ERR=30 results. The resultant string
from the CPP function must be placed in executable memory with the ADDR directive. It can
then be executed with a CALL directive.

EXAMPLES

COMP ILED$=CPP(""'TESTPROG''+ $000A$+"5 ENTER A$"+ $0010%$+"10 FOR I=1 TO
10" +$000B$+"20 PRINT A$"+$0009%$+"30 NEXT I1'"+$0007$+"40 EXIT™)

is equivalent to a saved program called "TESTPROG" that lists as follows:

00005 ENTER A$
00010 FOR I=1 TO 10
00020 PRINT A$
00030 NEXT 1

00040 EXIT

[ADDR "TESTPROG'", COMPILED$

puts the previous example into executable memory so that it can then be CALLed.

FMT1$=""#DNFFMT1",

FMT2$=""#DNFFMT2";

FORMAT INCLUDE #FMT1$;

FORMAT INCLUDE #FMT2$;

DNM1$=""_DNAME1",

DNM3%$=""_DNAME3",

COMPILED$=CPP(*'DNAMEPGM"'+$001B$+''100 FORMAT INCLUDE "‘+FMT1$+
$001B$+'"200 FORMAT INCLUDE "'+FMT2$+$0025%+'300 "'+FMT1$+DNM1+
' = "+FMT2$+DNM3$+$0025%+°400 **+FMT1$+DNM3+" = *""+FMT2$+DNM1$+
$0008%$+''900 EXIT'™)

53

Copyright © 2013 Thoroughbred Software International, Inc.

is equivalent to a saved program called "DNAMEPGM" that lists as follows:

00100 FORMAT INCLUDE #DNFFMT1
00200 FORMAT INCLUDE #DNFFMT2
00300 LET #DNFFMT.DNAME1 = #DNFFMTZ2.DNAME3

00400 LET #DNFFMT1.DNAME3 = #DNFFMTZ2.DNAME1
00900 EXIT

SEE ALSO

PFL and PFP functions
ERRBUF system variable

54

Copyright © 2013 Thoroughbred Software International, Inc.

CRC
Cyclic Redundancy Code
This string function conducts a logical operation on the binary form of a string value, byte by byte, and

returns a two-byte ASCII cyclic redundancy code. CRC provides some communication error checking
on a given string value with the probability of uniqueness being 1 in 65536.

[CRC (string-value [,2-byte-string] [,ERR=line-ref],ERC=error-code])

string-value is any string.

2-byte-string is a two-byte string to be included in this CRC operation that is used to carry
forward the result of a previous CRC operation.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

This function is normally used in checking for errors in data transmission.

The logical operation of this function is a complex exclusive OR, in a predetermined pattern,
on each bit in the binary form of the string-value.

This function is associative, allowing results to be accumulated for use in later CRC
functions. For this capability, the optional 2-byte-string can be specified.

EXAMPLES

[CRC ("C™)

returns the characters "gA" or $F141$ which represent the result of the CRC operation.

[CET A$ = CRC (B$+C$)

is equivalent to:

LET A$ = CRC (B$)

LET A$ = CRC (C$,A$)
SEE ALSO

LRC function

55

Copyright © 2013 Thoroughbred Software International, Inc.

CTC
Commit Count

This numeric function returns the commit count from an SQL DataServer.

|CTC (disk-specifier [,ERR=line-ref],ERC=error-code]) |

disk-specifier is a positive integer-value or string-value containing the name of a logical disk

directory.

line-ref is the program line number or label to branch to if an error is produced by this
function.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.

REMARKS
This function is generally available starting with release level 8.6.1.
If an invalid disk device is specified, an ERR=14 results.
If the specified disk device does not access one of the SQL DataServers , an ERR=14 results.
If there is a problem communicating with the specified SQL DataServer, an ERR=150 results.
Starting with release 8.7.1, disk devices DA-DZ and Da-Dz can be referenced by disk number.

EXAMPLES

[C = CTC(*DS™)

returns the commit count from the SQL DataServer accessed via disk device DS.
SEE ALSO

SET CTC directive

56

Copyright © 2013 Thoroughbred Software International, Inc.

CTL

Control Key Variable

This numeric system variable returns an integer value to an INPUT [EDT] or FINPUT directive as
determined by keyboard editing keys and program function keys.

[CTL

REMARKS
The following list displays the value of CTL for each key noted:

Function or Edit Key Value of CTL

Enter 0
F1 1
F2 2
F3 3
F4 4
F5 5
Fn n
Cursor Arrow Right -1
Cursor Arrow Left -2
Cursor Arrow Down -3
Cursor Arrow Up -4
Backspace -5
Delete Character -6
Insert Character -7
Insert Line -8
Delete Line -9
Erase Line -10
Erase Page -11
Tab Forward -12
Tab Backward -13
Cursor Home -14
Ctrl-p -15
Page Down -16
Page Up -17
Screen Down -18
Screen Up -19
Boundary Down -20
Boundary Up -21
User Defined -22
57

Copyright © 2013 Thoroughbred Software International, Inc.

Not every keyboard layout, monitor, or terminal has all these keys. Negative CTL values are
sensed only by the INPUT directive with the EDT option. The corresponding key for a negative
CTL generates its normal character sequence to the program for INPUT without the EDT
option and READ directives without terminating the INPUT.

This system variable is numeric and may be used in numeric expressions.

Once set, the value remains unchanged until cleared to 0 by the next BEGIN, CLEAR, END,
FINPUT, INPUT [EDT], LOAD, RESET, RUN, or STOP directive or until you go to
Thoroughbred Basic Console Mode.

Keyboard keys, which generate a CTL value, also act as a pressed Enter key to terminate
FINPUT and INPUT [EDT] directives.

If the only key pressed for an FINPUT or INPUT [EDT] directive is a CTL-generating key
no data is returned, only the appropriate value in CTL.

CTL values are matched to the keyboard characters for each terminal or monitor type sent in
its associated configuration table in the files TCONFIG or TCONFIGS.

One special case of CTL occurs when an FINPUT or INPUT [EDT] uses the SIZ= option
(see FINPUT and INPUT [EDT] directives) to ensure that the data does not exceed a specific
number of bytes. If the operator attempts to enter more characters than specified by the SIZ=
option, the FINPUT or INPUT [EDT] is terminated, the characters entered to that point are
processed, and CTL is set to 5 to designate that the S1Z= option was exceeded.

When the PRM DEBUG=progname statement is specified in the IPLINPUT file and you use
the Ctrl-B keystroke to interrupt program execution, progname will execute. When a
debugging program exists, the interrupted Thoroughbred Basic program will continue to
execute. The value of the CTL system variable is set to -99,999. For more information on the
PRM DEBUG statement and the IPLINPUT file, please refer to the Thoroughbred Basic
Customization and Tuning Guide.

EXAMPLES

[LET X = CTL

If the F1 key was previously pressed, X is set to 1.

58

Copyright © 2013 Thoroughbred Software International, Inc.

CVT

Convert String

This string function edits a string value into a new string value.

[CVT (string-value, option-value [,ERR=Iine-ref],ERC=error-code])

string-value is any string.

option-value s an integer, which designates the editing operations to be performed.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

Thoroughbred Basic permits option-value to be any integer from .99999999999999E+141
through -2147483649. However, the only significant values range from 0 through 16383 (which
is 1+2+4+8+16+32+64+128+256+512+1024+2048+4096+8192).

The CVT function performs editing on string-value based on the bit positions in the binary
code value of option-value, but option-value is given in integer format for ease of use.

The following chart lists the option-value, its binary code value, and the editing operation
specified by this value. Values are additive; so an option-value of 7 performs the functions of
1, 2, and 4. To avoid confusion you can specify the option-value as the sum of individual
values (e.g. 1+2+4) instead of only using the resultant sum (7).

Option Binary* Operation

0 0000 0000 0000 0000 Do not edit.

1 0000 0000 0000 0001 Clear the high-order (leftmost) bit in each byte.
2 0000 0000 0000 0010 Remove all blanks and tabs.

4 0000 0000 0000 0100 Remove unprintable characters below space

($00% through $1F$). However, when PRM
CVTSTRIP is set, characters from 80 through
$9F$ will also be removed because they are first
stripped to $00 through $1F$.

8 0000 0000 0000 1000 Remove all leading spaces and tabs.

59

Copyright © 2013 Thoroughbred Software International, Inc.

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

0000 0000 0001 0000

0000 0000 0010 0000

0000 0000 0100 0000

0000 0000 1000 0000

0000 0001 0000 0000

0000 0010 0000 0000

0000 0100 0000 0000

0000 1000 0000 0000

0001 0000 0000 0000

0010 0000 0000 0000

0100 0000 0000 0000

1000 0000 0000 0000

Reduce each multiple occurrence of spaces
and tabs to one each.

Convert lowercase characters to uppercase.

Convert "["and "]" to "(" and ")"
respectively.

Remove all trailing spaces and tabs.

Don't alter characters within double
quotes.

Swap bytes in every 2-byte pair. For
example, 01020304 becomes
02010403.

Remove all characters that are not spaces,
alphabetic (upper and lowercase), or
numerics.

Same as option-value=1, but do not alter
the field separator for data records (default
field separator is usually $8A3).

Convert uppercase characters to lowercase. This has
priority over option-value 32.

Converts the entire string into its mirror

image. For example: "ABCD" becomes

"DCBA". When combined with other options, this is
always performed first.

Replaces all unprintable characters with a space (00
- $1F$ and $7F$ - FF).

Removes trailing nulls then trailing LF and CRLF

* Binary values shown for bit positioning only.

EXAMPLES

LET EDITED_STRING$ = CVT('ALL UPPERCASE WITH EXTRA SPACES ",
8+16+128+4096)

removes leading spaces and tabs (8), removes duplicate spaces and tabs (16), removes
trailing spaces and tabs (128), and converts all uppercase characters to lowercase (4096)
resulting in EDITED_STRING$ = "all uppercase with extra spaces".

60

Copyright © 2013 Thoroughbred Software International, Inc.

DATEMASK
SQL Datemask

This system variable returns a string that contains the current SQL datemask.

[DATEMASK

REMARKS
The default for DATEMASK is "DD-MON-YYYY HH:MI:SS".

EXAMPLES

SET DATEMASK "'DD-Mon-YYYY"
LET D$=DATEMASK

D$ receives the value: "DD-Mon-YYYY".

SET DATEMASK " **
LET D$=DATEMASK

D$ receives the value: "DD-MON-YYYY HH:MI:SS".

SEE ALSO

SET DATEMASK directive
DTN and NTD functions
CDS system variable

61

Copyright © 2013 Thoroughbred Software International, Inc.

DATESTRINGS

SQL Month and Day Names

This system variable returns a string with a list of months and days used by SQL date functions.

[DATESTRINGS

REMARKS
This system variable can be used in string expressions.
The default for this system variable is the full names of the months and days in English.

This system variable provides the names of months and days that are used by the SQL date
functions.

EXAMPLES

[LET A$ = DATESTRINGS

A$ gets the value: "JANUARY ,FEBRUARY ,MARCH,APRIL,MAY JUNE,JULY,
AUGUST,SEPTEMBER,OCTOBER,NOVEMBER,DECEMBER,SUNDAY,
MONDAY, TUESDAY , WEDNESDAY, THURSDAY ,FRIDAY,SATURDAY" .

SEE ALSO

SET DATESTRINGS directive
DTN and NTD functions

62

Copyright © 2013 Thoroughbred Software International, Inc.

DAY

System/Task Date

This system variable returns an 8-byte string containing this task's current date, in the form
MM/DD/YY. The date returned is today's system date unless changed by the SETDAY directive.

[DAY

REMARKS

If this task's current date is set with the SETDAY directive, then the DAY system variable
shows that date, even if system time lapses over midnight, until another SETDAY directive is
executed or this task is RELEASEd and reSTARTed.

When this task is STARTed, DAY returns the system date and keeps current with the system
date (updated day by day) unless this task’s current date is set with the SETDAY directive.

EXAMPLES

[CET Z$ = DAY

On April 26, 1984, Z$="04/26/84".
SEE ALSO

SETDAY directive

63

Copyright © 2013 Thoroughbred Software International, Inc.

DCM
Data Compress

This string function returns the compressed version of another string based on the compression rules
below.

[DCM (string-expression [,ERR=Iine-ref],ERC=error-code])

string-expression is any string.

line-ref is the program line number or label to branch to if an error is produced by
this function.

error-code is a programmer-defined error code. Valid values are positive or negative
whole numbers.

REMARKS
String-expression is evaluated, left to right, for multiple occurrences of the same character in
groups of 4 or more. The resultant string function returns a single string made up of packets
of compressed and uncompressed characters as follows:

» The first two bytes contain the length, in binary, of the packet immediately following. If the
left-most bit is set (the sign bit) then the packet contains unlike characters and the value of
the first two bytes (minus the sign bit) is the length of that packet.

» If the sign bit of these two bytes was zero, then the two bytes represent the length of a
multiple-occurrence character. This character is found in the next byte after the two-byte
length.

» The first packet is followed by subsequent packets for the length of string-expression.

The result of this string compression algorithm can be uncompressed using the UCM function.

EXAMPLES

[LET COMPRESSED_STRING$ = DCM ("'AAAABCDEFGGGGG'")

results in COMPRESSED_STRINGS$ containing three packets as follows:

e $00 04 41$ specifies 4 like characters of 413, the code for an "A".
o $80 05 42 43 44 45 46$ specifies 5 unlike characters ("BCDEF").
« $00 05 47$ specifies 5 like characters of 47 ("G").

Total returned string length is 13 bytes.
SEE ALSO
UCM Function

64

Copyright © 2013 Thoroughbred Software International, Inc.

DEC

Return Decimal Value of ASCII String

This numeric function returns the decimal integer value of an ASCII character string.

[DEC (string-value [,ERR=line-ref],ERC=error-code])

string-value is a string whose numeric equivalent ranges from 0 through
+/-.99999999999999E+141.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

The DEC function is similar to the ASC function, but the ASC function operates on only a
single character. The DEC function is the reverse of the BIN function.

The DEC function treats the leftmost bit as a sign bit and generates a negative integer if that
bit is set to (1) or a positive integer if that bit is clear (0). The ASC function does not use the
highest bit as a sign bit.

EXAMPLES

[DEC ("A™)

returns the value 65; the decimal code for the character "A".

[LET X = DEC (B$)

If B$="AB", this statement assigns X the value 16706.

[DEC (BIN(193,1))

returns the value -63 because this BIN function causes the sign (leftmost) bit to be set to 1
and DEC interprets it as a negative value.

SEE ALSO

ASC and BIN functions

65

Copyright © 2013 Thoroughbred Software International, Inc.

DEF EN

Define Function

This directive allows the user to name and define a numeric or string function. It can then be referred to
at any point in the program by using the proper function to call up this definition. This allows an
expression to be used repeatedly in a program without redefining it each time.

DEF FNx (variable-list) = numeric-expression

DEF FNx$ (variable-list) = string-expression

X is the function name. In Thoroughbred Basic release levels before
8.1B2, the function name must be a single, uppercase alphabetic
character. Starting with release level 8.1B2, the function name must
begin with an uppercase letter, can be up to 32 characters long, and can
contain any combination of uppercase letters (A-Z), numbers (0-9), and
the underscore character.

variable-list is a list of variables to be used as arguments in resolving the
numeric-expression or string-expression value.

numeric-expression is any number.
string-expression iS any string.
REMARKS

The principal use of this directive is to define the formulas, numeric expressions, or string
expressions used throughout a program. This eliminates the need to use the full formula or
expression each time a result is needed.

The variable-list may contain numeric variables and string variables, which are used in the
defined numeric-expression or string-expression. Their type and position specify the type and
position of the numeric expressions and string expressions to be used when the defined
function is executed. The variable names used in the directive need not match the names used
when the defined function is executed.

The defined function is invoked through the use of its given name. For example, if the
programmer uses this directive as follows:

[DEF FNAS(A,B,C) = STR(A) + STR(B) + STR(C)

then the function could be used as follows:

[LET THREE_NUMBER_STRING$ = FNA$(NUM1,500,DEC(*'AB™))

The function defined can only be used within the program currently executing. It is not
passed on to the next program that is RUN to a CALLed public program.

66

Copyright © 2013 Thoroughbred Software International, Inc.

Values for variables named in the variable-list of this directive changes whenever the
corresponding function is used. Therefore, the variable-list names should not be used for
purposes other than this defined function to avoid unexpected results.

If this directive is used in Thoroughbred Basic Console Mode, an ERR=45 results.

EXAMPLES

[DEF FNQ (A.B,C,X) = (A * X**2) + (B * X) + C

defines a calculation using 4 numeric variables, which enables you to use

[LET A = FNQ(A,B,C,X)

instead of

[LET A= (A * X2) + (B * X) + C

each time the calculation must be coded.

[DEF FNC (A$,B$) = (NUM (A$) + NUM (B$)) 7 2

is a numeric function, which accepts two string variables containing numeric data, and
returns the mathematical average.

DEF FNDATE_TIME$ (CURRENT TIME, CURRENT DATE) = DAY +
STR (INT (TIM) :"BB#O™) + ":" +
STR (INT (FPT (TIM)*60) :"00") + ":" +
STR (INT (FPT (TIM*60) *60) :'00")

defines a string expression which, when invoked by the function

[EFNDATE_TIMES (T1M,DAY)

returns today's date and time in the format: MM/DD/YY HH:MI:SS. If the date and time
were June 13, 1989 at noon, this returns:

["06/13/89 12:00:00"

SEE ALSO

FN Function

67

Copyright © 2013 Thoroughbred Software International, Inc.

DELETE

Delete Program Statements

This directive removes statements from a program. You can use it in Thoroughbred Basic Console
Mode and Thoroughbred Basic Run Mode.

DELETE [line-refl [, line-ref2]]

DELETE [, line-ref2]

line-refl is a statement label or line number that specifies the first program line to be
removed from the program. The default is 1.

line-ref2 is a statement label or line number that specifies the last line to be removed from
the program. This cannot reference a line below line-refl. If not specified and the
comma is used, defaults to 65534; if not specified and no comma is used, defaults
to line-refl value.

REMARKS

Only the copy of the program in the task memory is altered. The copy of the program stored on
disk is not altered until the program in task memory is SAVEd.

One program statement or a range of statements can be removed.
If line-refl is greater than line-ref2, an ERR=45 results.

If line-refl does not exist in the program, the next highest line in the program or line-ref2,
whichever is less, is the first to be DELETEd.

If line-ref2 does not exist in the program the next lowest line in the program or line-refl,
whichever is higher, is the last to be DELETEJ.

If an attempt is made to DELETE portions of an ENCRYPTed or PSAVEd program, an
ERR=18 results. DELETEing the entire program does not create an error.

EXAMPLES

[DELETE

removes all program statements from the task memory area.

[DELETE 123

removes program statement 123 only.

68

Copyright © 2013 Thoroughbred Software International, Inc.

[DELETE 123 ,

removes all statements from and including 123 through 65534.

[DELETE 123 , 350

removes all program statements from and including 123 through and including 350.

[DELETE , 350

removes all program statements from and including 1 through and including 350.

[PRINT LST (CPL ("'DELETE™))

shows how Thoroughbred Basic sets the default program line numbers when it PRINTS:
00000 DELETE 00001,65534
SEE ALSO

RENAME directive

69

Copyright © 2013 Thoroughbred Software International, Inc.

DELETE ARRAY

Delete Array Elements

This directive deletes elements of an array.

DELETE ARRAY array-name [(posl,countl)[, (pos2,count2)
[, (pos3,count3)]1]]

array-name is the name of an array followed by the left square bracket (or optionally the left
parenthesis in the case of a numeric array).

posl is the starting position where deleting begins.
pos2
pos3

countl is the number of elements that are deleted.
count2
count3

REMARKS
Deleting indices in a multi-dimensional array changes the dimensions of the array. In a
multi-dimensional array, deleting all the elements from any dimension essentially deletes the

whole array, i.e. in a 4x4x4 array, doing a DELETE ARRAY A[(0,4)] turns the array into a
0x4x4=0 elements array.

If there is not enough memory to expand the array during DELETE ARRAY, an ERR=33
results.

If any of the positions or counts are not integers, an ERR=41 results.
If the array does not exist, an ERR=42 results.

If an attempt is made to DELETE elements before the starting position of the dimension, an
ERR=42 results.

If an attempt is made to DELETE elements after the last element in the dimension +1, an
ERR=42 results.

EXAMPLES

[00060 DIM AS[5]; FOR X = 0 TO 5; AS[X] = STRLIX]; NEXT X

70

Copyright © 2013 Thoroughbred Software International, Inc.

creates a one-dimensional string array and populates it with the following values:

A$[0] = "0"
A$[1] = "1"
A$[2] = 2"
A$[3] = "3"
A$[4] = 4"
A$[5] = "5"

[DELETE ARRAY AS[(3.,D)]

deletes the third array element, which moves the fourth and fifth entries into the third and
fourth elements:

AS$[0] = "0"
A$[1] = "1"
A$[2] = 2"
A$[3] = "4
A$[4] = "5"

[DELETE ARRAY AS[(2,2)]

deletes the second and third array elements, which moves the fourth entry into the second

element:

A3[0] ="0"

A3[1]="1"

A$[2] ="5"
SEE ALSO

INSERT ARRAY directive

71

Copyright © 2013 Thoroughbred Software International, Inc.

DIM - numeric array

Dimension Numeric Array

This directive defines a numeric array of up to three dimensions.

DIM array-name(diml [, dim2 [, dim3]]) [, array-name (diml [, dim2 [,
dim3]1)---1

array-name IS any numeric variable name.

dim1,2,3 is an index specifying the number of entries in the first, second, and third
dimensions of the array as described below.

REMARKS

Starting with release level 8.1B2, a lower boundary other than zero can be specified for each
index.

The syntax for index values dim1,2,3 is:

[[Tow-index:] high-index |

low-index is a signed integer that specifies the lower bound of each range. This
option is generally available starting with release level 8.1B2. Prior
release levels do not have this option and use a lower bound of zero

(0).
high-index is a signed integer specifying the higher bound of each range.
If the low index is not specified, then the default for starting the array element is 0.

The low index and the high index can be negative integers provided that the range
does not exceed 65000 entries.

If the low index has a greater value than the high index, an ERR=41 results.

65000 is the maximum number of total entries in the numeric array and 64999 is the
maximum number of any individual dimension.

The statement, which dimensions a numeric array, must be executed before any reference can
be made to that numeric array.

Each element of the array is initialized to 0 when the array is dimensioned, but can contain
any valid number within the limits of Thoroughbred Basic.

Memory space used to store an array may be released by redimensioning the array to 0.

72

Copyright © 2013 Thoroughbred Software International, Inc.

If dim1is 5, dim2 is 10, and dim3 is 15, this array has 6 occurrences in the first dimension,
11 in the second, and 16 in the third for a total of 1056 entries.

More than one variable can be dimensioned in a statement by separating the variable names
with commas.

Starting with release level 8.0, the parentheses in the syntax print as brackets ([and "]")
and may be entered as brackets. This shows the DIM directives for both numeric and string
arrays with brackets while the DIM Function and DIM directive for a simple string shows
parentheses when LISTed. To avoid LISTing brackets in release levels starting with 8.0 use
the PRM LISTPAREN parameter in the IPLINPUT file (see the chapter on System Files in
the Thoroughbred Basic Customization and Tuning Guide). With PRM LISTPAREN, the
DIM directives list as in releases prior to 8.0.

If you use the CALL directive to call a public program that will permanently change the
value of an array element, you must pass the entire array to the called program. Array
elements are passed by value, so any changes to the element will not be reflected in the
calling program. For more information and examples, please refer to the description of the
CALL directive.

EXAMPLES

[DIM ACO)

If X=5, defines an array with the 6 elements: A(0), A(1), A(2), A(3), A(4), A(5).

[DIM ACX:Y)

If X=3 and Y=8, this statement defines an array with 6 elements: A(3), A(4), A(5), A(6),
A(7), A(8).

[DIM B(2,3)

defines a two-dimensional array with the elements:

B(0,0) B(10) B(20)
B(0,1) B(L1) B(21)
B(02) B(12) B(22)
B(0,3) B(13) B(23)

[DIM B(0)

releases memory space set up in the example above and eliminates the numeric array.

[DIM ACX), ARRAY_NANE(5)

If X=5, this statement sets up the same numeric array as the first example and another
numeric array of the same size named ARRAY_NAME.

73

Copyright © 2013 Thoroughbred Software International, Inc.

[DIM THREE_DIM_ARRAY(2,2,2)

defines a three-dimensional array having a total of 27 elements.

[DIM A(2:8,3,-4:6)

defines a three-dimensional array. The first dimension has 7 elements with 2 as the lowest
index. The second dimension has 4 elements with 0 as the lowest index (default). The third
dimension has 11 elements, with -4 as the lowest index.

SEE ALSO

DIM string and DIM string array directives
DIM and NEA functions

74

Copyright © 2013 Thoroughbred Software International, Inc.

DIM - string
Dimension String

This directive defines a string of a given length with the option to preset its value to a specific character.

DIM variable-name(length [, init-value])
[, variable-name (length [,init-value])...]

variable-name is the name of a string variable.

length is an integer in the range of 0 to 65000 specifying the initial number of
characters the variable-name contains.

init-value is a string whose first character is used as the character that fills the string
variable-name. If this value is not specified and length is not 0, variable-name is
preset to spaces.

REMARKS

Defining variable-name with a length of 0 erases the contents of variable-name and releases the
memory space it occupied.

More than one variable can be dimensioned in a statement. Separate the variables by
commas.

EXAMPLES

[DIM DISK_SECTOR$(512, $00%)

defines a string variable whose length is 512 bytes and presets its value to null (hexadecimal
zZeros).

[DIM STRING_VARTABLE$(1000, "MESSAGE™)

constructs a string variable of 1000 bytes and loads it with the character "M".

[DIM SPACE_TAKER$(80)

defines a string variable that is 80 characters long and presets it to spaces.
SEE ALSO

DIM numeric array and DIM string array directives
DIM and PAD functions

75

Copyright © 2013 Thoroughbred Software International, Inc.

DIM - string array
Dimension String Array

This directive defines a string array of up to 3 dimensions, allowing for an initial length setting and
preset value.

DIM array—name[eleml [, elem2 [, elem3]]] [(length [,init-value])]
[array—name[eleml [, elem2 [, elem3]]] [(length [,init-value])]--.-1]

array-name is any string variable name.
elem1,2,3 is an index specifying the size of the dimension.

length is an integer in the range of 0 to 65000 specifying the initial number of
characters assigned for each string. The default is 0.

init-value is any string whose first character is used as the character that fills each string in
the array as a default. If this value is omitted but length is specified, the default
is the space character.

REMARKS

The syntax for elem1,2,3 is:

[[Tow-index:] high-index

low-index is a signed integer specifying the lower bound of each range. This
option is generally available starting with release level 8.1B2. Prior
release levels do not have this option and use a lower bound of zero

(0).
high-index is a signed integer specifying the higher bound of each range.
If the low index is not specified, then the default for starting the array element is 0.

The low index and the high index can be negative integers provided that the range
does not exceed 65000 (4090 under MS-DOS).

If the low index has a greater value than the high index, an ERR=41 results.

65000 is the maximum number of total entries in the string array as well as the maximum
number of any individual dimension. For MS-DOS environments, this value is 4090.

If elem1,2,3 were 5, 10, and 15 respectively, this array has 6 occurrences in the first
dimension, 11 in the second, and 16 in the third for a total of 1056 elements.

Entering a space between array-name and the left bracket ([) is not valid.

76

Copyright © 2013 Thoroughbred Software International, Inc.

LONGVAR mode must be set when this directive is entered into a program (see
LONGVAR).

Memory space used to store any string may be released by redimensioning it to 0 with the
DIM directive for string arrays.

More than one variable may be dimensioned in a statement if the variables are separated by
commas.

If you use the CALL directive to call a public program that will permanently change the
value of an array element, you must pass the entire array to the called program. Array
elements are passed by value, so any changes to the element will not be reflected in the
calling program. For more information and an example, please refer to the description of the
CALL directive.

EXAMPLES

[DIM SALES_ARRAY$S[REGIONS, STATES, PEOPLE]

for REGIONS =4, STATES = 20, and PEOPLE = 28, could be used to define a string array
to hold the names of the sales people to be referenced by state number within region for
region-specific and state-specific mailings. Remember that the actual string array has 5
occurrences in the first dimension (0 - 4), 21 in the second (0 - 20), and 29 in the third (O -
28) for a total of 3045 elements.

[DIM SALES_ARRAYS (0)

has no effect on the string array defined by the previous example.

[DIM SALES ARRAYSL 0]

clears the string array defined in the first example above.

[DIM TABLE_NANMES[MAKE, MODEL] (20, *")

defines a string array of two dimensions and presets each of the 20-character strings to
asterisks so that, if this table were printed in a two dimensional format, those entries which
had not been updated or changed prints as asterisks.

[DIM SALES_ARRAY$[4:10] (10,%)

yields a single dimension string array of 7 elements with 4 as the lowest index.
SEE ALSO

DIM numeric array and DIM string directives
DIM, NEA and PAD functions

77

Copyright © 2013 Thoroughbred Software International, Inc.

DIM - string function

Dimension String Function

This string function creates a temporary string variable, with no name, of a specified length with an
optional preset value for use in comparisons.

[DIM (length [,value] [,ERR=line-ref],ERC=error-code])

length is an integer in the range of 0 to 65000 specifying the number of characters
represented by this function.

value is any string whose value is repeated to the length specified; if omitted, the
default is space.

line-ref s the program line number or label to branch to if an error is produced by this
function.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.

REMARKS
Specifying a length of 0 effectively represents a null string (string with no data and 0 length).

EXAMPLES

[IF STRING4$ = DIM (LEN (STRING4$), "ABCD™)

tests STRING4$ for the character sequence "ABCD". STRING4$ = "A", "AB", "ABC",
"ABCD", "ABCDA", "ABCDAB", (etc.), evaluate as true conditions.

[IF UNKNOWNS = DIM (LEN (UNKNOWNS), "*'")

tests UNKNOWNS$ for all asterisks, regardless of the length of UNKNOWNS.

[IF MAYBE_SPACES$ = DIM (LEN (MAYBE_SPACESS$))

tests MAYBE_SPACESS$ for all spaces, regardless of its length.
SEE ALSO

DIM numeric array, DIM string array and DIM string directives
PAD function

78

Copyright © 2013 Thoroughbred Software International, Inc.

DIR

Current Directory Variable

This system variable returns the full path name of the current directory specified by the last SET DIR
directive.

[DIR |

REMARKS

Starting with release level 8.1B2, the returned string is terminated with a slash (/") for UNIX
and a backslash ("\') for DOS.

The default for this variable is the full path name for the directory from which Thoroughbred
Basic was executed.

A hierarchical directory must be set in the IPL file for Thoroughbred Basic to create or locate
a file using the current directory.

EXAMPLES

[CET A$ = DIR

If A$ = "/usr/lib/Basic/WORD", the current directory is "/usr/lib/Basic/WORD"
Starting with release level 8.1B2, A$ contains "/usr/lib/Basic/WORD/".

SEE ALSO

SET DIR and SET PREFIX directives
PREFIX system variable

79

Copyright © 2013 Thoroughbred Software International, Inc.

DIRECT

Define Single-Keyed Access File

This directive is used to create a new, single-keyed data file in a logical disk directory.

DIRECT file-name, key-size, num-records, record-size,
disk-num, sector-num [,ERR=line-ref],ERC=error-code]

file-name is any string of 8 characters or fewer used to name this file.
key-size is an integer in the range of 1 to 144 indicating the size, in bytes, of this file's
key.

num-records is an integer in the range of 0 to 16,777,215 indicating the maximum number of
records to be contained in this file.

record-size is an integer in the range of 4 to 32767 indicating the number of bytes in each
record in this file.

disk-num specifies the logical disk directory that contains this file. Valid values are 0
through 35.

sector-num is the number O (zero). Each operating system allocates where the file is stored.
Refer to your operating system documentation for additional options.

line-ref is the program line number or label to branch to if this directive produces an
error.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

If any integer range is exceeded, an ERR=41 results.

If a file-name of more than eight characters (operating system-specific) is specified, an
ERR=10 results.

All valid values for sector-num are treated as 0, but syntax requires sector-num to be
specified.

File-name must be unique in the execution environment. An attempt to define a file having
the same name as another file that is already defined on an available logical disk directory
results in an ERR=12.

The file-name can contain any ASCII characters, unprintable as well as printable. Avoid the
using characters which have special meaning in different operating system environments, for
example, " * " in UNIX and MS-DOS, " /" in UNIX, " # " and "\ " in MS-DOS, and so on.

80

Copyright © 2013 Thoroughbred Software International, Inc.

To avoid confusion do not use device or task names as file-names. For example, do not use
TO-T9, TA-TZ,Ta-Tz,DO - Dz, LP, PO - Pz, GO - Gz, CO - Cz. In general, most device
and task names use two-character names. The simplest approach is to not use two-character
file-names.

Starting with release level 8.3.1, you can define num-records as 0. This dynamic file type has
no EOF (end of file) restrictions, so the necessity for file expansion is removed. The file can
contain more than 2 billion records and 140 trillion characters. The minimum record size for
this type of DIRECT file is 6 characters.

EXAMPLES

[DIRECT "SEAL"™, 10, 57, 26, 2, O

creates a DIRECT file named "SEAL" with the following parameters: key length is 10 bytes,
57 records with a length of 26 bytes each, and a location on logical disk 2 starting at a sector
allocated by the operating system.

[DIRECT A$, A, B, C, D, E, ERR=7999

If A$="SEAL", A=10, B=57, C=26, D=2, and E=0 has the same effect as the first example
and branches to statement 7999 if this directive produced an error.

SEE ALSO

ADDSORT, ERASE, FILE, INDEXED, INITFILE, MSORT, REMSORT, SERIAL, SORT,
TEXT and TISAM directives

81

Copyright © 2013 Thoroughbred Software International, Inc.

DISABLE

Prevent Logical Disk Access

This directive prevents access to a specified logical disk directory and the files it contains. This
effectively removes the files contained on the specified logical disk directory from use until an
ENABLE reverses this action.

[DISABLE disk-num [, LOCAL] [,ERR=Iine-ref],ERC=error-code]

disk-num specifies the logical disk directory to DISABLE. Valid values are 0 through 35.

LOCAL s an optional modifier that restricts this action to this task only. Other users on
the same system are not restricted from using disk-num by this DISABLE.

line-ref s the program line number or label to branch to if this directive produces an
error.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.

REMARKS

LOCAL is the effective value, even if it is not specified. No logical disk directory can truly be
DISABLEd globally.

If the task is released (see RELEASE), all DISABLEs issued by that task are removed.

If an attempt is made to DISABLE a logical disk directory which still has files OPEN, an
ERR=0 results.

If an attempt is made to DISABLE a logical disk directory which contains files that have
been added to the File Control Table with the ADD or ADDR directives, an ERR=0 results.

If an attempt is made to DISABLE a logical disk directory which has already been
DISABLEd, an ERR=14 results.

A DISABLE LOCAL must be removed by an ENABLE LOCAL; a DISABLE, by an
ENABLE.

A logical disk directory may be DISABLEd both LOCALIy and globally at the same time,
requiring ENABLE LOCAL and ENABLE to reverse both.

DISABLE causes all unwritten cache buffer space to be written for the disk-num before
designating it as DISABLEG.

82

Copyright © 2013 Thoroughbred Software International, Inc.

EXAMPLES

[DISABLE 2

removes the ability of this task to access the files on logical disk directory 2.

[DISABLE A

If A =2, has the same effect as the first example.
SEE ALSO

ENABLE and RESERVE directives

83

Copyright © 2013 Thoroughbred Software International, Inc.

DNE

Data Name in Error

This system variable returns a 30-character string that contains the name of a data element that was
assigned an invalid value (either an error 166 or 167 condition), or was determined to be corrupt (an
error 169 condition).

[DNE

REMARKS
An ERR=166 is produced when trying to store a string into a numeric data name.
An ERR=167 is produced when the value is invalid according to the data element's attributes.

An ERR=169 is produced when a corrupt data element, one with an invalid combination of
attributes, is encountered.

EXAMPLES

00100 SETERR 08000;
#DNFFMT .NUMBER=S$

08000 D$=DNE

If S$="AAA", D$ receives the value "#DNFFMT.NUMBER".

00100 SETERR 08000
#DNFFMT .NUMBER = 999999

08000 D$ = DNE

If the data element "NUMBER" is defined to be length 5 and precision 0, D$ receives the
value "#DNFFMT.NUMBER".

00100 SETERR 08000
#DNFFMT. STRING = "STRING-1"

08000 D$=DNE

If the data element "STRING" is defined to be length 20 and input type 1 (optional and fixed
length), D$ receives the value "#DNFFMT.STRING".

SEE ALSO

ATR, FMD, and FMT functions
FORMAT INCLUDE directive

84

Copyright © 2013 Thoroughbred Software International, Inc.

DROP
Drop Filename from File Table

This directive removes a file-name from the File Control Table that was placed there with an ADD or
ADDR directive, and releases the memory allocated by a public program that was ADDRed.

DROP file-name [,ERR=line-ref],ERC=error-code]
DROP trigger-definition-list [,ERR=line-ref|,ERC=error-code][OPT="10T""]

file-name is a string of 8 characters or fewer used to name the file or public
program that has been added to the File Control Table.

trigger-definition-list is a string of 8 characters or fewer used to name the trigger definition
to deactivate. For more information see the 3GL Trigger section of
the Basic Developer Guide

line-ref is the program line number or label to branch to if this directive
produces an error.

error-code is a programmer-defined error code. Valid values are positive or
negative whole numbers.

OPT="10T" is the keyword that indicates to Basic that this is a Trigger List.
REMARKS
If an attempt is made to DROP a file-name that is not in the File Control Table, an ERR=13
results.
EXAMPLES
[DROP " INDEX'

removes the entry for the file "INDEX" from the File Control Table.
SEE ALSO

ADD, ADDR, and DROP ALL directives

85

Copyright © 2013 Thoroughbred Software International, Inc.

DROP ALL

Drop All ADDRed Filenames from File Table

This directive removes all file-names from the File Control Table that were placed there with an ADDR
directive, and releases the memory allocated to public programs that were ADDRed.

[DROP ALL [,ERR=line-ref],ERC=error-code]

line-ref is the program line number or label to branch to if this directive produces an
error.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.

REMARKS

The ALL modifier is generally available starting with release level 8.1, and causes all public
programs to be removed from the File Control Table.

If an attempt is made to DROP ALL and there are no file-names in the File Control Table
from ADD or ADDR directives, an ERR=12 results.

EXAMPLES

(01000 DROP ALL, ERR=01001

drops all file-names from the File Control Table based on previous ADDR directives, and
continues operation with the next logical Thoroughbred Basic statement, ignoring any
ERR=12 that results if there were no file-names to DROP.

SEE ALSO

ADD, ADDR, and DROP directives

86

Copyright © 2013 Thoroughbred Software International, Inc.

DSD

Device Status Description

This string function returns information on the specified task, device, or logical disk directory.

[DSD (string-value [,ERR=line-ref|,ERC=error-code]) |

string-value is any string containing the name of a task, device or logical disk directory.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

Since DSD contains detailed information about the specified item, it is very operating system
dependent, and care should be taken to not misinterpret the string data returned by DSD.

Logical disk directories return a 54-byte string.
The information is returned in the following format:
All Release Levels

Byte(s) Description

1-2 Task, Device, or Logical Disk Directory name (e.g., "T1", "LP", "D2", or "A:")
3 Status Byte (unused)
4 "F"=Floppy Disk (MS-DQOS)
"G"=Ghost Task
"P"=Printer
"T"=Terminal
5 Port Type:

$x0$=Ghost Task, Terminal, or Monitor
$x1$=ttyl or COM1 (MS-DOS only)
$x2$=tty2 or COM2 (DOS only)
$x9%$=Printer

87

Copyright © 2013 Thoroughbred Software International, Inc.

6 Printers:
$x0%=Direct Device
$x1$=Spooled Device
$x2%$=Slaved to Terminal
Disks:
$x0%=Logical Disk Directory
$x1$=Contains Subdirectories
$x3%$=Hierarchical Directory
MS-DOS Floppy Drive (""A:" or "B:")

Byte(s) Description

7 Binary number of heads

8-9 Binary number of total cylinders

10 Binary number of 512-byte sectors per track
11 Unused

All Except MS-DOS Before Thoroughbred Basic 8.0
Byte(s) Description

7-10 Unused

11 Logical Disk Directory Status:

"D"=Disabled
"L"=Locally Disabled
"R"=Reserved
Space=Enabled

Tasks in MS-DOS
Byte(s) Description
12-18 Unused

19-20 The binary number of bytes in the input type-ahead buffer

88

Copyright © 2013 Thoroughbred Software International, Inc.

Tasks in All Except MS-DOS Before Thoroughbred Basic 8.0

Byte(s) Description

12 - 20 Unused

Tasks in Thoroughbred Basic 8.0 and Above

Byte(s) Description

11-18 The Terminal Model Code from the TCONFIGS file for this task
19-20 Number of characters in the type-ahead buffer (MS-DOS only)
Tasks in Thoroughbred Basic 8.2, Printers Only

Byte(s) Description

11-18 Printer mnemonic table name

Logical Disk Directories in Thoroughbred Basic 7.4 and Above, Except MS-DOS
Byte(s) Description

12 Open file Cache Status:

$x0$=0ff
$x1$=0n (default)

13-20 Unused

21 -22 Binary Sector Size in bytes

23 - 86 Logical disk directory name; for a hierarchical directory, the directory name of
the last file successfully opened on this disk using PREFIX ("." for current

directory or if no PREFIX path name was successful; " " if a full-path file name
was successfully opened on this disk)

Logical Disk Directories in MS-DOS
Byte(s) Description

12 - 16 Unused

89

Copyright © 2013 Thoroughbred Software International, Inc.

17 File Allocation Table (FAT) ID:

FF=double-sided, 8-sector floppy
FE=single-sided, 8-sector floppy
FD=double-sided, 9-sector floppy
FC=single-sided, 9-sector floppy
$F8%=hard disk
18 Sectors per Allocation Unit in binary
19-20 Number of Allocation Units in binary
21 -22 Sector Size in binary
23-72 Path Name
"R" (Reserved) only appears in byte 11 for the task that issued the RESERVE.

RESERVE has no effect on a logical disk directory other than changing the byte 11
designator.

DSD(FID(0)) is a special use of the DSD Function, which returns the terminal table name
from the TCONFIG file that is currently being used by this task.

SEE ALSO

FID, FST, and XFD functions

90

Copyright © 2013 Thoroughbred Software International, Inc.

DSK

Current/Configured Disk Drives

This string function is available only in MS-DOS and returns the name of the current default disk or
helps determine which system disks are configured.

[DSK (disk-specifier [,ERR=line-ref|,ERC=error-code]) |

disk-specifier is a positive integer-value, null, or string-value containing the name of a logical
disk directory.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

This system variable is available only in Thoroughbred Basic for MS-DOS.
Valid values for disk-specifier and their meanings are:
null string = returns the name of the current default logical disk directory.

integer-value = returns the name for the logical disk directory specified by
integer-value if that logical disk directory is mounted.

string-value = returns the name specified by string-value if that logical disk directory
IS mounted.

If an attempt is made to access a logical disk directory that is not configured, either through
numeric-value or string-value specification, an ERR=17 results.

EXAMPLES

[PRINT DSK(0)

prints the name of the disk mounted as logical disk drive zero (e.g. "A:").

[PRINT DSK(C™) |

prints the current default logical disk directory; if running off the first hard disk this might
print "C:".

SEE ALSO

SETDRIVE directive

91

Copyright © 2013 Thoroughbred Software International, Inc.

DSZ

Data Size (Available User Memory)

This system variable returns the amount of memory, in bytes, available in this task's memory bank for
variables.

[DSZ

REMARKS
This system variable is a numeric value and can be used in numeric expressions.
The DSZ value is constantly changing as memory requirements change.

This system variable represents space available for variables (data size) based on allocated
data space minus space used by current variables.

EXAMPLES

[LET DATA_SPACE = DSZ

If DATA_SPACE = 15216, there are 15216 bytes of memory available in the memory bank
that holds the user task.

SEE ALSO

PSZ system variable

92

Copyright © 2013 Thoroughbred Software International, Inc.

DTN

Date/Time Numeric

This numeric function is used to convert the date and time in string format as specified by a mask to
SQL numeric format.

[DTN (string-value [,date-mask] [,ERR=Iine-ref],ERC=error-code])

string-value s a string that contains a date in the format specified by date-mask or a null
string value for current date.

date-mask is any string containing a date format using the characters specified below. The
default date-mask is "DD-MON-YYYY HH:MI:SS".

line-ref is the program line number or label to branch to if this directive produces an
error.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

The range of valid dates is 01-JAN-9999 (9999BC) through 31-DEC-9999 (9999AD).

If a month is specified that is not one of the standard 12, an ERR=26 results. This is normally
caused by an improper match of date-mask to actual date in string-value.

If a day is specified that is not a valid number in the given month, in that given year, an
ERR=41 results.

If both a month and a Julian day are specified in the date-mask, Thoroughbred Basic will
return ERR=26.

Valid masking characters are:

YY Two-digit year; century is assumed based on string-value as
compared to the years from today's Y'Y-50 through today's Y'Y +49.

YYY Three-digit year; assumes leading +0.
YYYY Full four-digit year; optional leading minus sign for BC dates.
MM Two-digit month (e.g., January = 01, December = 12)
MON Uppercase, three-character abbreviation of the month (e.g., "JAN").
Mon Upper/lowercase, three-character abbreviation of the month (e.g.,
"Jan").
93

Copyright © 2013 Thoroughbred Software International, Inc.

MONTH
Month
DD
DDD

DY

Dy

DAY

Day

HH

Ml

SS
SS.SSSSSS

AM or PM

Full uppercase name of the month (e.g., "JANUARY").
Upper/lowercase, full name of the month (e.g., "January").
Two-digit day of the month.

Three-digit day of the year (Julian) from 1 through 366.

Uppercase three-character abbreviation of the day of the week (e.g.,
"MON").

Upper/lowercase three-character abbreviation of the day of the week
(e.g., "Mon").

Uppercase day of the week, for example, "MONDAY™.
Upper/lowercase day of the week, for example, "Monday".

Hour of the day in 24-hour format of the time given.

Minutes of the time given.

Seconds of the time given.

Seconds of the time given in maximum of 6-decimal place accuracy.

Returns "AM" for clock times between midnight and noon;"PM" for
clock times between noon and midnight.

Specifications for a year, a month, and a day are required to calculate SQL dates. A value of
1 is used for any missing specification. For example:

DTN("9906","YYMM") isequivalent to DTN("990601","YYMMDD")
DTN("9906","YYDD") isequivalentto DTN("990106","YYMMDD")
DTN("0601","MMDD") is equivalent to DTN("00010601","YYYYMMDD")

EXAMPLES

1. Suppose your program received a date in the string variable DATE_STRINGS$ as
follows, and you wanted to change that format easily:

"Tuesday, June 13, 1989 at 12:00:00"

94

Copyright © 2013 Thoroughbred Software International, Inc.

The simplest way is to convert it to its SQL numeric format and then convert it back out
using the NTD Function. The first part looks like:

LET SQL_NUM DATE = DTN (DATE_STRINGS, "Day, Month DD, YYYY at
HH:MI:SS™)

This makes SQL_NUM_DATE contain the value 726268.5 which could then be
reformatted by:

[LET NEW _FORMAT_STRING$ = NTD (SQL_NUM_DATE, "MM/DD/YY™)

which yields "06/13/89". Note that the purpose of date-mask is to tell DTN how to
interpret the string-value.

[NTD (DTN (DATE_STRINGS, “"Day, Month DD, YYYY at HH:MI:SS™))

accomplishes the above result in a single expression.

2. Toillustrate how to use a missing specification:

[PRINT NTD(DTN(''9906","YYMM™),"™ ™)

prints 01-JUN-1999 00:00:00 because the value 1 is assumed for the missing day
specification.

3. When a month and a Julian day are specified in the date-mask, as in:

[PRINT NTD(DTN(''991231","YYMMDDD'"),""™)

Thoroughbred Basic returns ERR=26.
SEE ALSO

NTD Function
CDN, CDS and DATESTRINGS system variables
SET DATESTRINGS directive

95

Copyright © 2013 Thoroughbred Software International, Inc.

DTR

Data to Record Conversion

This string function converts a string that contains fields without field separators into a data record
format with fields and field separators, based on a data definition table for the file that is to contain the
data record.

DTR (string, data-defn-table [,ERR=li1ne-ref|,ERC=error-code]
[,SEP=Field-sep])

string is a string that contains fields but not field separators.
data-defn-table is a string that contains a four-byte definition for each field in the record:

Bytes 0 and 1 represent, in binary, the starting byte position (1-based) of a
field in a string. This is used by the DTR function to convert a string or
substring into a field with a field separator.

Bytes 2 and 3 represent, in binary, the length of a field. This is used by the
DTR function to convert a field into a string or substring.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative
whole numbers.
field-sep is a character that separates each field within a record.
REMARKS

The principal use of this function is to convert a string with imbedded fields, which allows
for more efficient use by a Thoroughbred Basic program, into fields with field separators,
which allows for more efficient use of disk storage space.

The SEP= field-sep option is generally available starting with release level 8.2. This option is
to be used if the string is going to be converted using a field separator other than the default,
usually $8A$.

96

Copyright © 2013 Thoroughbred Software International, Inc.

EXAMPLES

raw_data$ = "ABC"+SEP+"DEF"+SEP+"GHIJKLM"+SEP
I Results of a READ RECORD

I Maximum length for each field:

tbl$ = BIN(1,2)+BIN(3,2)+ ! Field 1 starts at position 1 for a
! length of 3

BIN(4,2)+BIN(5,2)+ ! Field 2 starts at position 4 for a
! length of 5

BIN(9,2)+BIN(10,2) ! Field 3 starts at position 9 for a

! length of 10

fix_len_data$ = RTD(raw_data$,tbl$)
I Fixed length data looks like: "ABCDEF GHIJKLM '

new_data$ = DTR(Fix_len_data$,tbl$)
I This string would be used in a READ RECORD and look like:

! "ABC"+$8A$+"DEF "+$8AS+"GHIIKLM "+$8AS%

SEE ALSO

RTD Function

97

Copyright © 2013 Thoroughbred Software International, Inc.

DUMP

Dump Data and Environment Information

This directive is a debugging aid that prints on the selected channel the specified information about this
task.

DUMP keyword (channel [,ERR=line-ref],ERC=error-code]) dump-options

DUMP keyword (str-array[ALL] [,ERR=line-ref],ERC=error-code])
dump-options

keyword specifies what portion(s) of the programming and/or Thoroughbred Basic
environment should be dumped.

channel is an integer in the range of 0 to 32764 specifying the channel number of an
OPEN file or device.

str-array is the name of an existing string array that will receive the DUMP output.

line-ref is the program line number or label to branch to if an error is produced by this
function.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.

dump-options is one or more optional specifiers that limit or control the portion of the
environment to DUMP.

REMARKS

Starting with release level 8.2, this directive has been enhanced to recognize the Escape key
as a means of stopping a DUMP.

Starting with release level 8.2, you can only DUMP into three types of files: INDEXED,
SERIAL, and TEXT. If you try to DUMP into any other type of file, an ERR=17 results.

Starting with release 8.3.0, the output from a DUMP can be loaded into a string array. The
string array will then be re-DIMensioned to a one-dimension array and loaded if the array is
more than one dimension or contains less than three elements. The DUMP output will be
appended to the string array if there are three or more elements. The string array receiving the
DUMP output will not be DUMPed out.

Valid values and meanings for keyword are:

ACTIVE PROGRAMS Prints the names and sizes of programs currently loaded in memory
and in use by the current Thoroughbred Basic task.

ADDR PROGRAMS Prints the names of all ADDRed public programs.

98

Copyright © 2013 Thoroughbred Software International, Inc.

ALL

ARRAYS

CALLSTACK

CHANNELS

DEFERRED_WRITE

ENVIRONMENT

ESCAPE WHEN

FILES

FORLOOPS

FORMATS

GLOBAL VARS

GOSUBS

HELP

INT ARRAYS

INT VARS

IPLCONFIG

Prints out all levels of the current programming environment and the
Thoroughbred Basic environment.

Prints the names and values of all arrays in the environment including
the total number of elements, the dimension sizes, and the value of each
element in the array.

Prints out the CALL stack indicating which program was CALLed by
which program and from which statement number.

Prints out the names of all OPEN files, printers, and terminals.

Specifies that information generated by the DUMP directive is not
printed immediately.

Prints out all information about a single level of the current
programming environment. If a level is not specified using dump
options, the current level is displayed.

Prints the active breakpoints set by the GLOBAL ESCAPE WHEN
directive.

Prints out the name of each OPEN file and its channel number.

Prints active FOR/NEXT loops including the statement number of the
FOR, the loop variable, increment value, and ceiling value.

Prints the names of all INCLUDEd formats and the values of their data
names.

Prints out all common global variables. Displays the name and the
value of each variable. The length of the string is displayed along with
an ASCII and a hexadecimal representation of the value.

Prints active GOSUBs showing the statement number of the GOSUB
and the statement number referenced by the GOSUB.

Displays all valid DUMP options. To narrow the range of displayed
values, you can specify a string. For example, DUMP HELP "VAR"
displays all options that contain VAR.

Prints the names and values of all integer arrays.
Prints out the names and values of all integer variables.

Prints out IPLINPUT configuration information contained in the CNF
and PTN lines from the IPLINPUT file, which was used when this
Thoroughbred Basic task was initiated.

99

Copyright © 2013 Thoroughbred Software International, Inc.

IPLDEVS

IPLFILE

IPLINFO

IPLPRMS

NUM ARRAYS
NUM USER FNS
NUM VARS
PRINTERS

RETRY

STACKINFO

STR ARRAYS

STR USER FNS

STR VARS

SYSCOMMON

SYSTEM
TERMINALS

TYPEAHEAD_SIZE

Prints out all information specified in the DEV lines of the IPLINPUT
file which was used when this Thoroughbred Basic task was initiated.

Prints out the name of the IPLINPUT file, which was used when this
Thoroughbred Basic task was initiated.

Prints out all information from the IPLINPUT file, which was used
when this Thoroughbred Basic task was initiated.

Prints out the names and values of all allowable PRM lines from the
IPLINPUT file, which was used when this Thoroughbred Basic task
was initiated. For more information see the SET PRM directive and the
PRM section of the Basic Customization and Tuning Guide (System
Files).

Prints the names and values of all numeric arrays.

Prints the names and values of all numeric user defined functions.
Prints out the names and values of all numeric variables.

Prints out the name of each OPEN printer and its channel number.
Prints the Thoroughbred Basic statement that produced the last error
condition. LEVEL=allows you to display the last RETRY statement in
each level of the call stack.

Prints out all active program control information.

Prints the names and values of all string arrays including the length of
each element and hexadecimal and ASCII representations of the value.

Prints the names and values of all string user defined functions.

Prints out the names and values of all string variables, including the
length of each string and a hexadecimal as well as ASCII representation
of the value.

Prints out a subset of "SYSTEM" which contains the most commonly
needed system variables: CTL, DIR, ERR, PGN, PRC, PREFIX, PSZ,
SYS, and TRACEMODE.

Prints out the names and values of all system variables.
Prints out the name of each OPEN Terminal ID and its channel number.

Prints out the size of the keyboard buffer. For more information on
type-ahead control and the keyboard buffer, please refer to descriptions
of the BT and ET terminal mnemonics in the Thoroughbred Basic
Customization and Tuning Guide.

100

Copyright © 2013 Thoroughbred Software International, Inc.

USER FNS

VARS

VERSION

WHILELOOPS

WINDOWS

Prints the name, statement number of definition, and contents of all
user-defined functions.

Prints out the names and values of all program variables.
Prints Thoroughbred Basic version information.

Prints active WHILE/WEND loops indicating the statement number of
the WHILE.

Prints out all information about the current status of the Thoroughbred
Basic Window Manager including the total number of defined
windows, the current window, terminal information, and information
about each defined window.

The format for dump options is:

"LEVEL="

"NAME="

Allows the user to specify a particular environment level to DUMP. When used
along with "NAME=" this provides the ability to DUMP a specific variable in a
different level of the programming environment. When using public programs
and CALL/ENTER linkage, Level 0 refers to the main program that was RUN,
Level 1 is the first level of CALL, Level 2 the next nested CALL, and so on.
Starting with release 8.3.0, the current environment level may be specified as
"LEVEL=TOP".

Allows the user to specify a particular variable name, Thoroughbred Basic
Window, or format to DUMP. When specifying arrays, the name of the array
must be followed by brackets, e.g., "NAME=ARRAY]". A Thoroughbred
Basic Window name can be up to 8 characters long. The main screen may be
specified as "NAME=MAIN".

Multiple dump-options may be chained together into a single string using the vertical bar as a
separation character (|). The option to specify and use a different separation character is also
available with the "SEP=" option. Examples of both follow:

[1\LEVEL=0'

“NAME=STRING_ARRAYS$[] | LEVEL=0" "SEP=\NAME=STRING_ARRAY$

EXAMPLES

The following sample program contains most of the programming environment elements the DUMP

directive can display:

101

Copyright © 2013 Thoroughbred Software International, Inc.

00010
00050
00100
00150
00200
00300

00400
01000

01100

01200

06900
08000

09000

REM ""'DUMPPROGRAM - PROGRAM TO DEMONSTRATE * "DUMP"
DEF FNSQUARE$ (N)=STR(N*N)+" IS THE SQUARE OF "'+STR(N)
DIM NUM_ARRAY[5],STR_ARRAY$[2,2], INT_ARRAY%[-1:1,-1:1,-1:1]
NUMBER=10.5, STRING$= "'STRING ELEMENT ', ELEMENT=1
INTEGER%=INT (NUMBER)
CGVAR$=CGV(""'GLOVAL_VAR1","THIS VARIABLE IS PROTECTED");
CGVAR$=CGV("'GLOVAL_VAR2",""THIS VARIABLE IS NOT PROTECTED'")
FORMAT INCLUDE #DNFFMT ,OPT="'DEFAULT"
FOR SUB1=1 TO 6;

NUM_ARRAY[SUB1-1]=SUB1;
NEXT SUB1
FOR SUB1=0 TO 2;

FOR SUB2=0 TO 2;
STR_ARRAY$[SUB1,SUB2]=STRING$+STR(ELEMENT) ;
ELEMENT=ELEMENT+1;

NEXT SUB2;

NEXT SUB1
ELEMENT=1, COUNT=0, SUB1l= -1;
WHILE COUNT<3;

FOR SUB2=0 TO 2;

FOR SUB3=0 TO 2;
INT_ARRAY%[SUB1,SUB2-1,SUB3-1]=INTEGER%+ELEMENT ;
ELEMENT=ELEMENT+1;

IF ELEMENT=28 THEN
GOSUB 08000
FI;

NEXT SUB3;

NEXT SUB2;

SUB1=SUB1+1;
COUNT=COUNT+1;
WEND

GOTO 09000
OPEN (8) "P8';
DUMP ALL (8);
CLOSE(8);
RETURN

END

Output resulting from the DUMP directive at line 08000 will look like the following:

*x*k

ENVIRONMENT LEVEL = O PROGRAM = DUMPPROGRAM

*** ACTIVE PROGRAMS

0 DUMPPROG (1280)

TOTAL PROGRAM SPACE USED = 1280

NUM_ARRAY[] Number of elements = 6
Defined dimensions = 0:5

I nn
OO WNE

102

Copyright © 2013 Thoroughbred Software International, Inc.

STR_ARRAYS$[] Number of elements = 9
Defined dimensions = 0:2, 0:2
[0,0] Length = 16
1: "STRING ELEMENT 1" $53545249 4E472045 4C454D45 4E542031%

...and the remainder of elements in STR_ARRAYS...

INT_ARRAY%[] Number of elements = 27
Defined dimensions = -1:1, -1:1, -1:1
[-1,-1,-1] = 11

[-1,-1,0] = 12

[-1,-1,1]

13

...and the remainder of elements in INT_ARRAY%...

NUMBER = 10.5
STRING$ Length = 15
1: "STRING ELEMENT " $53545249 4E472045 4C454D45 4E5420%

INTEGER% = 10

SUB1 =1

SUB2 = 2

ELEMENT = 28

SUB3 = 2

COUNT = 2

GOSUB on line 1200 going to line 8000

FOR/NEXT loop starting at line 1200
Variable = SUB3 Step value = 1 Limit = 2

FOR/NEXT loop starting at line 1200
Variable = SUB2 Step value = 1 Limit

I
N

WHILE/WEND loop starting at line 1200
RETRY not active

*** GLOBAL ESCAPE WHEN INFORMATION
No breakpoints currently active

*** COMMON GLOBAL VARIABLES

IGLOBAL_VAR1 Length=26
1: "THIS VARIABLE IS PRO™ $54484953 20564152 4941424C
45204953 2050524F$
21: "TECTED" $54454354 4544%

...all other common global variables and their contents...

***EORMATS/DATA NAMES

#DNFFMT Number of data elements = 4
.DNAME-1 Length = 10
1: "STRING-1 " $53545249 4E472D31 2020%

-DNAME-2 = -99999.99

103

Copyright © 2013 Thoroughbred Software International, Inc.

...all other formats/data names and their contents...

*** SYSTEM VARIABLES

CDN = 726690.6

...all other system variables and their contents...

[*** ADDRed PROGRAMS

...lists all public programs that had been ADDRed...

*** WINDOW INFORMATION
number of windows = 1
Current window = Main window

Terminal Information:
Model code = W50
ANSI = No Auto-wrap = Yes

...and all information about this terminal pertinent to Thoroughbred Basic Windows...

*** CHANNEL INFORMATION
Files
No channels open
Printers
Channel Printer 1.D.
8 P8
Terminals
Channel Task 1.D.
0 T4

*** JPL ENVIRONMENT INFORMATION
IPL input file = IPLINPUT
Device definitions = 18

Number of FDT"s = 20

Partition size = 60000

Parameter (PRM) Status

ALLOC off << Default >>
CORE off << Default >>
1F47 On

...and all other PRM values...

Devices (DEV)

Disk Enabled Sub-dirs Path
DO Yes No /work/8.1/qa/UTILS
D3 Yes Yes /work/8.1/qa/SUB

104

Copyright © 2013 Thoroughbred Software International, Inc.

...and the remaining logical disk directories...

Terminal Driver Port

T4 Window tty

Printer Type Width Lock Timeout Command

P1 2=Slave 80 Yes 15 tty

P8 1=Spool, pipe 80 Yes 1 cat>dump.out

Ghost Tasks
None defined

*** END OF DUMP

The second example shows how to load DUMP output into a string array:

DIM SAS[1];
DUMP STR VARS (SAS[ALLI);
DUMP STR ARRAYS (SAS$[ALL])

first loads into SA$[] the names and values of all string variables and then the names and
values of all string arrays except for SA$[].

105

Copyright © 2013 Thoroughbred Software International, Inc.

EDIT - full screen

Full Screen Program Editor

This directive invokes the Thoroughbred Basic program editor, which provides line editing with a
full-screen display on which you can create and maintain Thoroughbred Basic programs.

[EDIT

REMARKS
This directive can only be used in Thoroughbred Basic Console Mode.
This directive performs a CALL to the public program "*EDIT*".

In release levels starting with 8.1, EDIT automatically uses the terminal configuration from
TCONFIGS8 (for non-windowed terminals) or TCONFIGW (for windowed terminals).

If a program is not currently in memory, the program editor displays a blank screen and the
programmer can enter a new program.

If a program is currently loaded into memory and has not been protected by ENCRYPT or
PSAVE, the program editor displays the program for the programmer to edit.

The editor has two Basic functions: Edit Mode and Line Mode. Pressing the Enter key
switches the programmer between Edit Mode and Line Mode. When the editor is called for
the first time, the programmer is in Line Mode. In this mode, the cursor (arrow) keys move
the cursor up or down one program line at a time. When the cursor is on a program line, press
the Enter key to switch to Edit Mode. The cursor keys only scroll inside the program line
rather than the entire program. When the editing of the program line is complete and the
program line has no syntax errors press the Enter key to save the changes and return to Line
Mode.

After the programmer exits the program editor by pressing the F4 key the system returns to
Thoroughbred Basic Console Mode. The program can then be SAVEd.

The programmer can change the name of the program editor that Thoroughbred Basic
automatically calls by altering the following line contained in the IPLINPUT file:

[PRM EDIT=program-name

program-name is the new name of the program editor.

The program editor uses a wide variety of functions to edit Thoroughbred Basic programs.
The following is a list of editing and function keys:

106

Copyright © 2013 Thoroughbred Software International, Inc.

Editing Keys:

Cursor keys Line insert Tab
Character insert Line delete Back-tab
Character delete Line erase Home

Cursor keys (up, down, left & right)
Edit Mode: The Up/Down cursor keys move the cursor up or down one line of the
program line at a time. The Left/Right cursor keys scroll the cursor only on the program

line that is being edited.

Line Mode: The Up/Down cursor keys move the cursor up or down one program line at a
time. The Left/Right cursor keys are ignored.

Character insert
Edit Mode: Inserts characters in the program line that is being edited.
Line Mode: This key is ignored.
Character delete
Edit Mode: Deletes the character that the cursor is currently on.
Line Mode: This key is ignored.
Line insert
Edit Mode: This key is ignored.
Line Mode: Inserts a line between program lines, which enables you to enter new
program lines. If blank lines are inserted and not used, they are removed when the screen
is reprinted or scrolled.
Line delete
Edit Mode: This key is ignored.
Line Mode: Deletes the program line that the cursor is currently positioned on.

Tab

Edit Mode: This key lets the programmer move the cursor forward five characters at a
time.

Line Mode: This key is ignored.

107

Copyright © 2013 Thoroughbred Software International, Inc.

Back-tab

Edit Mode: This key lets the programmer move the cursor backward five characters at a
time.

Line Mode: This key is ignored.

Function Keys:

F1 - Page Down F6 - Help

F2 - DELETE STATEMENT F7 - PRINT STATEMENT
F3 - Page Up F8 - Search/Replace

F4 - END F9 - Reprint screen

F5 - Undo statement F10 - GOTO statement

F1 - Page Down
Edit Mode: This function is ignored.

Line Mode: The programmer can scroll forward one screen at a time. The Page Down
key, if available, performs the same function.

F2 - DELETE STATEMENT
Edit Mode: This function is ignored.

Line Mode: Deletes a program line or a range of program lines. When you press the F2
key the following prompt is displayed:

DELETE STATEMENTS: From <return=current>:
To <return=current> :

If one program line is to be deleted and the cursor is currently positioned on that program
line, the programmer can press the Enter key and that program line number or label prints
automatically in the input field. Or, the programmer may enter starting and ending
program line number or labels to be deleted.

F3 - Page Up
Edit Mode: This function is ignored.

Line Mode: The programmer can scroll backward one screen at a time. The Page Up key,
if available, performs the same function.

F4 - END

Edit Mode: This key exits the program editor and returns the programmer to
Thoroughbred Basic Console Mode or whatever mode the editor was called from.

108

Copyright © 2013 Thoroughbred Software International, Inc.

Line Mode: This key exits the program editor and returns the programmer to
Thoroughbred Basic Console Mode or whatever mode the editor was called from.

F5 - Undo statement
Edit Mode: When a program line is edited, the original is stored temporarily. If, while
editing the program line, the programmer makes a mistake and wants to start again with

the original program line, pressing the F5 key reprints the original program line in the
window. When entry mode is terminated, the temporary storage area is cleared.

Line Mode: This function is ignored.
F6 - Help
Edit Mode: This function is ignored.
Line Mode: Lists the Editing Keys and Function Keys.
F7 - PRINT STATEMENT
Edit Mode: This function is ignored.
Line Mode: This function lets the programmer print a program line or a range of program

lines on the printer. When the F7 key is pressed, the programmer is asked to select a
printer. After a printer is selected the following prompt is displayed:

PRINT STATEMENTS: From <return=current>:
To <return=current>:

If only one program line is to be printed and the cursor is currently positioned on that
program line, the programmer can press the Enter key to print. Otherwise, the
programmer may enter starting or ending program line number or labels to be printed.

F8 - Search/Replace
Edit Mode: This function is ignored.
Line Mode: Lets the programmer search the program for the occurrence of a specific
program line number or label or text segment. This function can either search a range of
program lines or search to the end of the program. There is also the option of replacing
the text found with another text sequence. The programmer may specify only one search
and one replace string, each being up to 40 characters long.

F9 - Reprint screen

Edit Mode: This function is ignored.

Line Mode: Reprints the entire editor screen. Under certain circumstances, it may be
desirable to reprint the screen due to editing conditions.

109

Copyright © 2013 Thoroughbred Software International, Inc.

F10 - GOTO statement
Edit Mode: This function is ignored.
Line Mode: Moves to the specified point in the program, either a program line number or
label or text segment. When searching for text, the programmer may start from the

present position (find next occurrence) or the beginning of the program (find first
occurrence):

GOTO-Enter statement # or text segment (*'):

Options for GOTO statements:

0 GOTO first line in program

7900 GOTO program line 7900, or next program line if 7900 does not exist
99999 GOTO last program line in program

Options for GOTO text segments:

"A9$= GOTO next occurrence of text "A9$=" (searches from current cursor
position)

"A9$="" GOTO first occurrence of text "A9%=" (searches from the beginning of the
program)

7900 GOTO next occurrence of text *7900" (note this may be the actual program
line number or label or a command reference to this program line)

SEE ALSO

EDIT line, EDIT recall, and EDITF directives
Description of EDIT in the Thoroughbred Basic Utilities Manual

110

Copyright © 2013 Thoroughbred Software International, Inc.

EDIT - line

Program Line Editor

This directive provides a way to edit single program lines without retyping the entire program line and
provides for copying, replacing, deleting, and inserting strings of text in the line.

EDIT line-ref [edit-specifier [string—constant] 1

line-ref is the program line number or label to be edited.
edit-specifier is a letter or blank specifying the editing procedure to conduct on the
program line.

[string-constant] s any string constant (enclosed in brackets) that specifies text associated
with edit-specifier.

REMARKS

In release levels starting with 8.3.1, the EDIT line-ref command provides a larger set of
line-editing features. For example, EDIT 100 displays the line numbered 100. Press the F6 key
to display on-line help and editing keys. After you edit the line you can press the Enter key to
implement the changes.

Alternately, the EDIT directive can operate on a program line from left to right, including the
full program line number or label. The edit-specifiers are:

C copies text from the current position to the last character of the first
occurrence of string-constant. This is the most common method of
positioning in the program line.

R replaces text in the program line with the text contained in string-constant,
byte for byte, space for space.

D deletes text in the program line from the current position through the first
occurrence of string-constant.

Space (absence of an edit-specifier) inserts string-constant into the program line
starting at current position.

Enter ends the EDIT directive and copies the program line from current position to
the end.

If the EDIT directive is used to change a program line number, the original program line is
retained and the edited program line is inserted in the program in the correct position.

This directive can be used only in Thoroughbred Basic Console Mode.

111

Copyright © 2013 Thoroughbred Software International, Inc.

If a match is not found in the program line for string-constant when using "C" or "D"
edit-specifiers, an ERR=20 results.

EXAMPLES

[EDIT 100

displays program line 100, which can be edited without recourse to edit-specifiers.

*ERR
00100 IF X=10 ORRY =123 THEN GOTO 678

To correct the above program line number or label we could use:

[EDIT 100 C[OR]D[R]

which lists as:

(00100 IF X=10 OR Y=123 THEN GOTO 00678

The program line is copied to OR, the second R is deleted, and the carriage return copies the
remainder of the program line.

[00010 DIM ARRAYS$S[10,5 1 (10,)

could have its first dimension changed from 10 to 100 with:

[EDIT 10 C[[1][0]

which copies out to "[1" and inserts an extra "0".
SEE ALSO

EDIT full-screen, EDIT recall, and EDITF directives
Description of EDIT in the Thoroughbred Basic Utilities Manual

112

Copyright © 2013 Thoroughbred Software International, Inc.

EDIT - recall

Recall Last Command for Editing

This directive enables you to retrieve, edit, and execute the last command entered and executed in
Thoroughbred Basic Console Mode.

[* [line-num] |

line-num is the program line number to be edited. Valid values are integers.
REMARKS
This directive can be used only in Thoroughbred Basic Console Mode.

When the ' (apostrophe character) is entered without a line number, this directive displays the
last entered command. You can modify the command:

» To execute the edited command, press the Enter key.

» If you do not want to execute the command again, press the Escape key to return to
Thoroughbred Basic Console Mode.

If there is no previous command, the ' command is ignored. A new line with a new prompt
character will be displayed.

When the ' (apostrophe character) is entered with a line number, this directive is equivalent to
the EDIT line-ref directive. For more information on available editing options, please refer to
the description of the EDIT - line directive.

EXAMPLES

READY
S -
>

displays a new line and prompt character. Thoroughbred Basic has just been started, no
command has been entered, and so no command can be recalled.

> PRINT “oewsss

*khkkx

s -

PRINT e

The PRINT "*****'* command produces *****, Typing ' (apostrophe character) and
pressing the Enter key redisplays the PRINT "******* djrective. The following example
assumes that you will change ********* to ""HELLO".

113

Copyright © 2013 Thoroughbred Software International, Inc.

PRINT ""HELLO"
HELLO
>

After you change PRINT ""******* to PRINT ""HELLO" and press the Enter key,
Thoroughbred Basic displays HELLO, opens a new line, and displays the prompt character.

[> = 200

displays the line numbered 200 from the Thoroughbred Basic program currently loaded into
memory.

SEE ALSO

EDIT full-screen, EDIT line, and EDITF directives
Descriptions of EDIT and EDITF in the Thoroughbred Basic Utilities Manual

114

Copyright © 2013 Thoroughbred Software International, Inc.

EDITF

Formatted Program Editor

This directive invokes the Thoroughbred Basic formatted program editor, which allows you to create,
edit, and maintain Thoroughbred Basic programs using a formatted display of the program. EDITF
allows you to select the level of formatting, use the editing keys, and obtain Thoroughbred Basic
on-line documentation and help.

[EDITF

REMARKS
This directive can be used only in Thoroughbred Basic Console Mode.

To use EDITF, you must have Dictionary-1V installed and your terminal must be set up for
Thoroughbred Basic Windows. Before you use EDITF for the first time, you must run
Dictionary-1V and log in; this identifies your terminal to Dictionary-IV.

The EDITF menu allows you to select an editing option from the list of options, which
includes Structured, Unstructured, Range of Statements, and Source-1V. If you select
Unstructured, minimum formatting is done to the program to display it. Unstructured requires
less memory than Structured, and may appear to operate faster. If you select Structured,
considerable formatting is done to the program to display it, including breaking compound
statements into multiple lines, indenting continuation lines, and formatting program control
commands such as IF/THEN/ELSE/FI, WHILE/WEND, and FOR/NEXT to display the
logical structure of the command (including nesting). The Range of Statements option lets
you display a subset of program lines. The Source-1V option calls Thoroughbred Source-1V,
a program maintenance and source control system.

If a program is not currently in memory, EDITF allows you to enter a new program.

If a program is currently loaded into memory and has not been protected by ENCRYPT or
PSAVE, EDITF displays the program for editing after you select an editing option.

EDITF uses a wide variety of functions to edit Thoroughbred Basic programs. From any
location in the EDITF system, press the F6 key for help or the F4 key to exit. When in the
editor, you can select the on-line documentation system by pressing the F3 key.

When you exit EDITF by pressing the F4 key the system displays a "Save (Y/N)?" prompt,
asking whether you want to save the edited program back into the program workspace
memory. If you want to save the program to disk, you must use the SAVE directive in
Thoroughbred Basic Console Mode.

When you exit EDITF, a RESET is performed and the program execution pointer is set to the
first statement. If you need to edit a program without doing a RESET and resetting the
program execution printer, use the EDIT line or EDIT full-screen directive.

115

Copyright © 2013 Thoroughbred Software International, Inc.

EXAMPLES

LOAD "TESTPGM"
EDITF

After the program TESTPGM is loaded, the formatted program editor is invoked, allowing
you to edit the program.

SEE ALSO

EDIT line, EDIT recall, and EDIT full-screen directives
Description of EDITF in the Thoroughbred Basic Utilities Manual

116

Copyright © 2013 Thoroughbred Software International, Inc.

ENABLE

Allow Logical Disk Access

This directive removes the effects of a previous DISABLE directive and allows access to the specified
logical disk directory and its files.

[ENABLE disk-ident [, LOCAL] [,ERR=Iine-ref],ERC=error-code] |

disk-ident is normally an integer in the range of 0 to 35 indicating the logical disk directory
to be ENABLEGd. Starting with release level 8.1B2, disk-ident may also be the
directory name as defined in the DEV line of the IPLINPUT file.

LOCAL is an optional modifier that restricts this action to this task only; other users on the
same system are not affected by an ENABLE with the LOCAL maodifier. The
LOCAL maodifier is required on the ENABLE to remove the effect of a
DISABLE with the LOCAL modifier.

line-ref is the program line number or label to branch to if this directive produces an
error.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS
LOCAL is the effective value, even if it is not specified. A logical disk directory cannot be truly
DISABLEd globally.

If an attempt is made to ENABLE a logical disk directory that is already ENABLEd, an
ERR=14 results.

An ENABLE must be used to counter a DISABLE; an ENABLE, LOCAL to counter a
DISABLE, LOCAL.

A logical disk directory may be DISABLEd LOCALIy as well as globally at the same time,
requiring ENABLE, LOCAL and ENABLE to counter both.

EXAMPLES

[ENABLE 3

enables logical disk directory 3, removing the effect of a DISABLE directive on the disk.

[ENABLE A, LOCAL

If A=3, enables logical disk directory 3, removing the effect of a DISABLE 3, LOCAL.
SEE ALSO

DISABLE and RESERVE directives

117

Copyright © 2013 Thoroughbred Software International, Inc.

ENCRYPT

Encrypt Program File

This directive encrypts or decrypts a program file. Encryption prohibits a programmer from LISTing
any program line number or labels past line 00100, but does not impair program operation or usability.

ENCRYPT program-namel, program-name2 [,PWD=passwd]
[,ERR=1ine-ref],ERC=error-code]

program-namel s any string of 8 characters or fewer which specifies the name of an
existing program to be encrypted or decrypted.

program-name2 is any string of 8 characters or fewer which specifies the name for a new
program which contains the result of the encrypt or decrypt operation.

passwd is any string in the range of 4 to 8 characters in length.

line-ref is the program line number or label to branch to if this directive produces
an error.

error-code is a programmer-defined error code. Valid values are positive or negative

whole numbers.
REMARKS

ENCRYPTing a program without specifying the PWD= clause or specifying a password whose
value is null results in the use of a random string in the ENCRYPTion algorithm and the
ENCRYPTed program can never be decrypted.

ENCRYPTing program-namel as program-name2 does not remove program-namel.

If an attempt is made to ENCRYPT an already ENCRYPTed program, an ERR=18 results,
unless the PWD= clause specifies the correct password for the already ENCRYPTed
program. In this case, the ENCRYPT process is reversed and the resultant program is
decrypted.

If all program statements are numbered below 00100, Thoroughbred Basic generates an
ERR=18 because all program lines are readable.

The program-name2 parameter can be:
» Anexisting program, which is overwritten.
» The same as program-namel, which overwrites program-name1.

* A new program name, which is created in the same logical disk directory as the source
program.

118

Copyright © 2013 Thoroughbred Software International, Inc.

The display and modification of an ENCRYPTed program is restricted for the following
directives: LIST, EDIT, PGM, MERGE, SAVE, and PSAVE. An attempt to use these
directives on an encrypted program results in an ERR=18 (Secure File Access); however, the
LIST directive can still operate on program lines 1 through 99. ENCRYPTed program security
starts at program line 100. These restrictions can be temporarily suspended when a reversible
encrypted program is loaded using the PWD= option.

The PSAVE command can also encrypt a program.
SEE ALSO

PSAVE and LOAD directives

119

Copyright © 2013 Thoroughbred Software International, Inc.

END

End Program Execution

This directive terminates a program and initializes certain program parameters.

[END

REMARKS
The exact effects of this directive are:
1. Does not alter the value of variables.

2. Clears the Return Address Stack (used to hold address values for certain directives, i.e.,
FOR/NEXT, RETURN, RETRY, etc.).

3. Sets value of ERR and CTL to 0.

4. Sets PRECISION to 2, ends FLOATING POINT.

5. Sets SETERR and SETESC to 0.

6. Closes any files or devices.

7. Sets program execution pointer to the first program line.

8. Does not DROP public programs, which have been made resident by an ADDR directive.

9. Does not DRORP files, which have been added to the File Control Table by an ADD
directive.

10. Does not affect system variables such as TIM (Time) and DAY (Date).
11. Terminates any SETTRACE directive.

Every program contains an implicit END directive beyond the highest valid line number (i.e., at
program line 65535). This means that when execution is completed, an END directive is
performed even though an END directive does not explicitly appear in the program. Note that
for systems that allow 9999 as the highest program line number, the implicit END directive
occurs at program line 10000.

SEE ALSO

BEGIN, CLEAR, MERGE, RESET and STOP directives

120

Copyright © 2013 Thoroughbred Software International, Inc.

ENDTRACE

End Program Trace Mode

This directive ends the program listing initiated by the SETTRACE directive.

[ENDTRACE

REMARKS

A program trace initiated by the SETTRACE directive is also terminated by an END or STOP
directive.

SEE ALSO

END, SETTRACE and STOP directives

121

Copyright © 2013 Thoroughbred Software International, Inc.

ENTER

Public Program Entry Point

This directive is used in a public program to mark the point at which CALL parameters are passed to
the public program.

[ENTER [variable-lTist]

variable-list is a list of numeric and/or string variables to be received from the CALLing
program.

REMARKS

Only one ENTER directive may be executed in a public program, but it can appear anywhere in
the public program. If more than one execution of an ENTER occurs in a public program, an
ERR=36 results.

Public programs do not require an ENTER directive if no variable-list is to be passed.

The variable names do not have to be the same in the ENTER directive and its CALLing
directive, but they must match in order sequence and type (see EXAMPLES).

Variables used in the public program which do not appear in the variable-list of the ENTER
directive are available to the public program only and are not affected by the CALLing
program.

Variables used in the CALLing program which do not appear in the variable-list of the
ENTER directive are not available to the public program and are not affected by the public
program.

Numeric and string arrays used in the CALL/ENTER linkage must use the ALL option to
pass the full array if the CALLing program expects the public program to change the data in
the array. Single element array values may be passed to the public program, but changes
made within the public program are not sent back to the CALLing program.

Final values for variables named in the variable-list of the ENTER directive are passed back
to the CALLing program's corresponding variables when the public program EXITs unless
the CALL directive contains a constant or single array element in that position in its
value-list.

If an ENTER directive is executed in a program that is RUN rather than CALLed, an
ERR=36 results.

If the value-list in the CALL directive does not match the ENTER directive in sequence and
type, an ERR=36 or ERR=42 results.

122

Copyright © 2013 Thoroughbred Software International, Inc.

ENTER followed by no variable-list shares all its variables with the CALLing program, and
vice versa. The CALLed program can be thought of as a CALLable overlay.

An ERR=36 occurs if the caller tries to pass arguments through the CALL statement to a
public program with an ENTER statement that has no variable-list.

An ERR=38 occurs if the program has created any of its own data prior to the ENTER. This
applies only to an ENTER with no variable-list passed.

EXAMPLES

CALL "PuUBLIC1™, A$, B, C[ALL], D%, "ABC", 17038, G[1,2,3]

00100 ENTER Al1$, B1, Ci1[ALL], D1%, E1$, F1, G1

The PUBLIC1 public program receives the values from the CALLing program in its
variable-list as follows:

Al$ will have the string value of A%

Bl will have the numeric value of B
C1[ALL] will have all elements of numeric array C
D1% will have the integer value of D%
E1$ will have the string constant value of "ABC"
F1 will have the numeric constant value of 17038
Gl will have the value of the numeric array entry G[1,2,3]

When PUBLIC1 executes an EXIT directive and returns to the CALLing program the
corresponding values are passed back to the CALLing program for its A$, B, C[ALL], and

D%.
PROGBASE PUBLIC2
00100 LET A=1, B$="HELLO" 00100 ENTER
00200 CALL "PUBLIC2" 00200 LET B=5, A$="XXXX"
00300 PRINT A, B, A$, B$ 00300 PRINT A, B, A$, B$
00400 A=A+1, B$=B$+" THERE"
00500 EXIT

Running PROGBASE yields the following output:

1 5XXXXHELLO
2 SXXXXHELLOTHERE

SEE ALSO

CALL and EXIT directives

123

Copyright © 2013 Thoroughbred Software International, Inc.

EPT

Base 10 Exponent

This numeric function returns the exponent value of any number's floating-point representation.

|[EPT (numeric-value [,ERR=line-ref|,ERC=error-code])

numeric-value is a number.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

The current PRECISION has no effect on this function.

EXAMPLES

[EPT (1)

returns the value 1 (1 = .1E+1).

[EPT (.0234)

returns the value -1 (.0234 = .234E-1).

[EPT (X)

If X=.003024, returns the value -2 (.003024 = .3024E-2).

[EPT (-231)

returns the value 3 (-231 = -.231E+3).

[LET Z=EPT (Y/4)

If Y=100, returns the value 2 (100/4 = 25 = .25E+2) and assigns it to the variable Z.
SEE ALSO

FLOATING POINT directive

124

Copyright © 2013 Thoroughbred Software International, Inc.

ERASE

Erase File

This directive removes a file name from a logical disk directory and makes the physical disk space that
the file occupied available for use by the system.

[ERASE file-name [,ERR=line-ref|,ERC=error-code]

file-name is any string of 8 characters or fewer to name this file.

line-ref s the program line number or label to branch to if this directive produces an
error.

error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.

REMARKS
If an attempt is made to ERASE an OPEN file, an ERR=0 results.

If an attempt is made to ERASE a file whose name is not found on any available logical disk
directory, an ERR=12 results.

EXAMPLES

|[ERASE ""INDEX"

removes the file name "INDEX" from its logical disk directory and makes it unavailable to
any task.

|[ERASE A$, ERR=7999

If AS="INDEX", has the same effect as the first example and branches to program line 7999
if the directive produces an error condition.

SEE ALSO

INITFILE directive

125

Copyright © 2013 Thoroughbred Software International, Inc.

ERC

Error Condition Variable

This system variable returns the number of the user-defined error condition that last occurred during
program processing.

[ERC[=numeric-value]

numeric-value is any valid negative or positive whole number.
REMARKS

The ERC system variable, and the SET ERC and CLEAR ERC directives provide an alternate
way to process errors. The ERR= option common to many Thoroughbred Basic directives, the
ERR system variable, the ERR function, and the SETERR directive force a branch to a line
number. Errors processed through ERC do not require you to change program flow. Using ERC
can help you write Thoroughbred Basic programs that meet structured programming standards.
You can, however, use ERC and ERR in the same program.

To specify a user-defined error code, use ERC=numeric value. ERC will contain the value
only if an error occurs. To test for the error condition, you can use ERC in an IF statement.

This system variable is initialized to 0. To reset ERC to 0 you can use the CLEAR ERC
directive. To isolate sections of code in which errors may occur, you specify a value for ERC
closely followed by the CLEAR ERC directive.

EXAMPLES

OPEN(1, ERC=5) *'NOFILE"
IF ERC=5

PRINT ERC
CLEAR ERC

If NOFILE does not exist, the output is 5. If NOFILE exists, there is no output, which means
that no error occurred.

SEE ALSO

SET ERC and CLEAR ERC directives, ERR function, and ERR system variable

126

Copyright © 2013 Thoroughbred Software International, Inc.

ERM

Error Message

This string function returns the text of the specified error code.

[ERM (numeric-value [,ERR=line-ref|,ERC=error-code])

numeric-value is any valid Thoroughbred Basic error code.

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

If an invalid numeric-value is specified, an ERR=41 results.

EXAMPLES

[ERM (20)

returns "Statement Structure (Syntax)".

[PRINT ERM (80)

prints "Windows Error: Attempt to use same optional parameter twice" on the terminal.
SEE ALSO

Error Codes in VVolume |

127

Copyright © 2013 Thoroughbred Software International, Inc.

ERR - function
ERR Function

This numeric function returns a positive integer based on the value of the ERR system variable and that
value's position in a list of error values.

[ERR (error-list)

error-list is a list of error code numbers that are used to establish the value returned by this
function.

REMARKS
The integer value returned is determined as follows:

1. If the value of the ERR system variable matches the first entry in error-list, this function
returns a 1.

2. If the value matches the second entry in error-list, this function returns a 2.

3. If no match occurs between the ERR system variable and the error-list, this function returns
a0.

EXAMPLES

[ERR (0,12,34)

returns the value 1 if an Error 0 is produced.
returns the value 2 if an Error 12 is produced.
returns the value 3 if an Error 34 is produced.
returns the value O if any other error is produced.

ON ERR(0,12,42) GOTO 1000, 2000, 3000, 4000

GOTO 1000 if ERR is NOT equal to O, 12, or 42.
GOTO 2000 if ERR=0.
GOTO 3000 if ERR=12.
GOTO 4000 if ERR=42.

For more information on how to use this sample code please refer to the descriptions of the
ON GOSUB and ON GOTO directives.

SEE ALSO

ERR system variable

128

Copyright © 2013 Thoroughbred Software International, Inc.

ERR - variable

ERR Variable

This system variable returns the number of the error condition that last occurred during program
processing.

[ERR

REMARKS

This system variable remains unchanged until a new error occurs or after the execution of a
BEGIN, CLEAR, END, LOAD, RESET, RUN or STOP directive.

This system variable is numeric and may be used in numeric expressions.

Starting with release level 8.0, pressing the Escape key sets the ERR system variable to 127.
This does not cause an error condition: it only sets the ERR system variable.

EXAMPLES

[LET E = ERR

If E=19, the last error to occur is ERR=19, which is related to program format or size.
SEE ALSO

ERR function
ERC system variable, SET ERC and CLEAR ERC directives

129

Copyright © 2013 Thoroughbred Software International, Inc.

ERRBUF

Error Buffer

This system variable returns a string containing error conditions encountered when a program with
formats and data names was compiled (SAVEd).

[ERRBUF

REMARKS

The format of an entry in the error buffer is as follows:

statement number (2 bytes)

the error condition (2 bytes)

length of the format/data name (1 byte)
the format/data name (n bytes)

Statement number 0 (0000) signals the end of the error buffer.

Statement number 65535 ($FFFF$) signals that the error buffer reached capacity during the
compiling (SAVEing or FIXUP) of a program.

The error buffer is cleared out every time a program is SAVEd.
EXAMPLES

The following program prints the contents of an error buffer:

130

Copyright © 2013 Thoroughbred Software International, Inc.

00010 REM "PERRB - FORMATTED ERROR BUFFER PRINT"
01000 E$=ERRBUF, L=STL(E$),

STMT=0, ECOUNT=0, P=1;
PRINT "Invalid format/data name references:';

WHILE P<L2;
S=DEC(E$(P,2)), P=P+2;
IF S<>STMT
STMT=S;
PRINT "LF",@(4), ''Statement number ™,
STR(STMT:**00000"")
FI;
E=DEC(E$(P,2)); P=P+2;
N=DEC(E$(P,1)), P=P+1;
N$=E$(P,N), P=P+N;

PRINT @(8),"Error condition ', STR(E:"000"),
" detected for ",N$;
ECOUNT=ECOUNT+1;

WEND;

PRINT "LF*","Total number of errors detected: ', ECOUNT;

IF E$(P,2)=$FFFF$

PRINT "Program contains more errors ... ",

""correct and SAVE again"

Fl

09000 END

SEE ALSO

SAVE and FIXUP directives

131

Copyright © 2013 Thoroughbred Software International, Inc.

ESC

Escape Character

This string system variable returns the one-byte escape character, which is normally a hexadecimal
$1BS.

[ESC

SEE ALSO

SEP and QUO system variables

132

Copyright © 2013 Thoroughbred Software International, Inc.

ESCAPE
Escape Program Execution

This directive interrupts and suspends program execution, and puts you in Thoroughbred Basic Console
Mode.

[ESCAPE

REMARKS

This directive produces similar results to pressing the Escape key, however the SETESC
directive has no effect on the execution of the ESCAPE directive while the Escape key is
trapped by the SETESC directive. Refer to the SETESC directive and the Program Control
chapter in Volume I for an explanation of the Escape key operation.

The following effects are produced when this directive is executed in a program:

1. Returns task control to Thoroughbred Basic Console Mode.

2. Lists the program line that contains the ESCAPE directive.

3. Sets the program execution pointer at the program line that follows the ESCAPE directive.
Program execution can be resumed from Thoroughbred Basic Console Mode by typing RUN.
In release levels prior to 8.0, the ESCAPE directive produces an ERR=39 if executed from
within a public program. Starting in release level 8.0 the ESCAPE directive interrupts
operation just as in a program that is RUN.

If program execution has been interrupted and you are in Thoroughbred Basic Console
Mode, type ESCAPE to display the last program line executed. The program environment
will not be changed.

SEE ALSO

ESCOFF, ESCON and SETESC directives

133

Copyright © 2013 Thoroughbred Software International, Inc.

ESCAPE WHEN

Conditional Escape from Program Execution

This directive causes an escape from the program when a specified condition is met.

[ESCAPE WHEN condition

condition is a relational, Boolean, and/or logical expression used to establish a true or false
condition.

REMARKS

This directive cannot be executed from Thoroughbred Basic Console Mode. It must be in a
program.

The directive must be executed for the conditional to be in effect.
The conditional is checked after each directive is executed.

ESCAPE WHEN is only valid for the program in which it resides. It is not valid for any
programs called by the program that contains the ESCAPE WHEN.

Once the ESCAPE WHEN condition is met, Thoroughbred Basic does not continue to
process any other ESCAPE WHEN conditions.

Only one ESCAPE WHEN can be in effect at a time. Executing an ESCAPE WHEN after
one has already been executed supersedes the first one. To get multiple conditions, use
connecting OR operators.

The ESCAPE WHEN directive is a debugging tool. Including this directive slows program
execution.

EXAMPLES

The following program:

00010 REM PROGNAME

00020 ESCAPE WHEN 1=3 OR 1=9
00030 FOR I=1 TO 10

00040 PRINT 1

00050 NEXT |

134

Copyright © 2013 Thoroughbred Software International, Inc.

produces the following output:

>RUN""PROGNAME"*
1
2

>>ESCAPE CONDITION ENCOUNTERED<<
>>00050 NEXT 1

This program stops executing at line 00050, when the first ESCAPE WHEN (I=3) condition
is true. The message "ESCAPE CONDITION ENCOUNTERED" and the line that caused the
ESCAPE are displayed in Thoroughbred Basic Console Mode. At this point, Thoroughbred

Basic clears the ESCAPE WHEN conditions. When the second condition is met (1=9), no
ESCAPE WHEN processing occurs.

SEE ALSO

ESCAPE directive

135

Copyright © 2013 Thoroughbred Software International, Inc.

ESCOFF

Escape Trapping Off

This directive disables program escape trapping specified by the SETESC directive. After ESCOFF is
executed, a SETESC directive successfully sets the program line number or label for an Escape key, but
pressing the Escape key interrupts program execution rather than branch to that line number. The
ESCON directive enables program escape trapping and reverses the effects of ESCOFF.

[ESCOFF

REMARKS

The primary use of this directive is to enable a developer to debug programs that trap
escapes. This is normally not found in the program code itself, but is used in Thoroughbred
Basic Console Mode just prior to execution of a program so that the Escape key can be used

to interrupt program execution for debugging purposes.

EXAMPLES

00100
00110
00120
00130
00140
00150
00160

00200
00210
00220
00230

01000
01010

02000

BEGIN

SETTRACE

SETESC 01000

ESCOFF

WAIT 100; REM "Press Escape key"

ESCON

WAIT 100; REM "Press Escape key again"

ESCOFF

SETESC 02000

ESCON

WAIT 100; REM "Press Escape key one more time"

PRINT "Escape trapped at 01000
GOTO 00200

PRINT "Escape trapped at 02000

shows how this directive functions:

1. Pressing the Escape key when line 00140 lists to the screen causes a program interruption
and places you in Thoroughbred Basic Console Mode even though line 00120 contains a

SETESC directive.

2. Type RUN and press the Enter key. The program continues at line 00150, where the

ESCON directive turns on Escape key processing.

3. Pressing the Escape key when line 00160 lists to the screen causes the program to branch to
01000, indicating that the SETESC is once again active and that the ESCOFF directive did
not change the program line number or label set by the SETESC directive.

136

Copyright © 2013 Thoroughbred Software International, Inc.

4. Pressing the Escape key when line 00230 lists to the screen causes a branch to 02000,
indicating that the SETESC directive at line 00210 (executed after the ESCOFF at line
00200) is still able to change the program line number or label for Escape key processing.

SEE ALSO

ESCON and SETESC directives

137

Copyright © 2013 Thoroughbred Software International, Inc.

ESCON
Escape Trapping On
This directive enables program escape trapping specified by the SETESC directive and reverses the

effects of the ESCOFF directive. The default condition when Thoroughbred Basic is initiated is the
ESCON condition.

[ESCON

REMARKS

The primary use of this directive is to reverse the effects of the ESCOFF directive that is used
principally in debugging mode. This is normally not found in the program code itself, but is
used in Thoroughbred Basic Console Mode to restore normal Escape key trapping that has
been disabled with the ESCOFF directive.

EXAMPLES

00100 BEGIN

00110 SETTRACE

00120 SETESC 01000

00130 ESCOFF

00140 WAIT 100; REM "Press Escape key"

00150 ESCON

00160 WAIT 100; REM "Press Escape key again”

00200 ESCOFF

00210 SETESC 02000

00220 ESCON

00230 WAIT 100; REM "Press Escape key one more time"

01000 PRINT "Escape trapped at 01000"
01010 GOTO 00200

02000 PRINT "Escape trapped at 02000"

shows how this directive functions:

1. Pressing the Escape key when line 00140 lists to the screen causes a program interruption
and places you in Thoroughbred Basic Console Mode even though line 00120 had a
SETESC directive.

2 Type RUN and press the Enter key. The program continues at line 00150, where the
ESCON directive turns on Escape key processing.

3. Pressing the Escape key when line 00160 lists to the screen causes the program to branch to
01000, indicating that the SETESC is once again active and that the ESCOFF directive did
not change the program line number or label set by the SETESC directive.

138

Copyright © 2013 Thoroughbred Software International, Inc.

4. Pressing the Escape key when line 00230 lists to the screen causes a branch to 02000,
indicating that the SETESC directive at line 00210 (executed after the ESCOFF at line
00200) is still able to change the program line number for Escape key processing.

SEE ALSO

ESCOFF and SETESC directives

139

Copyright © 2013 Thoroughbred Software International, Inc.

EXECUTE

Execute Thoroughbred Basic Console Mode Instruction from Program

This directive provides Thoroughbred Basic Console Mode operations while in Thoroughbred Basic
Run Mode and allows dynamic alteration of programs.

[EXECUTE string-value [,OPT="LOCAL"]

string-value s a string that contains a Thoroughbred Basic program line.
REMARKS

This directive can be used in Thoroughbred Basic Run Mode only. If an attempt is made to
execute this directive in Thoroughbred Basic Console Mode, an ERR=45 results.

When this directive is executed, the string-value is treated as if a programmer had typed in
the string-value in Thoroughbred Basic Console Mode and terminated it by pressing the
Enter key.

If the string-value used as data does not include a program line number, it must be executable
as a Thoroughbred Basic Console Mode directive or an ERR=45 results.

When EXECUTE is placed in a public program and the string-value used as data includes a
line number, the program line will be merged into the public program if OPT="LOCAL" is
included. The program line will be merged into the main RUNning program, not on the
public program that contains it if OPT="LOCAL" is omitted.

EXAMPLES

|[EXECUTE ''X=34"

This directive immediately causes X to have the value 34.

[EXECUTE F$

If F$="4467 X=54+H" this inserts the program line:

(04467 LET X = 54 + H

into the main RUNning program, whether the EXECUTE comes from within the main
RUNnNing program or a public program which has been CALLed.

|[EXECUTE F$,0PT=""LOCAL"

If F$="4467 X=54+H this inserts the program line into the current public program.

140

Copyright © 2013 Thoroughbred Software International, Inc.

[EXECUTE D$ |

If D$="DEF FNX(A)=A+1" produces an ERR=45 because the DEF FN directive can only be
used in Thoroughbred Basic Run Mode and it requires a program line number.

[EXECUTE ""100"+D$ |

If D$="DEF FNX(A)=A+1" inserts the program line into the program as program line 00100.

EXECUTE "11REM"+QUO+"LAST RUN ON"+DAY+QUO
EXECUTE "SAVE PGN"

changes line 00011 in the current program (whose name is in the system variable PGN) to
show today's date and SAVE the program back on disk before continuing program execution
thus keeping a record of the last date when this program is RUN.

SEE ALSO

CPP function

141

Copyright © 2013 Thoroughbred Software International, Inc.

EXIT

Exit from Public Program

This directive causes a public program to pass back any CALL/ENTER variables and return to the
CALLing program.

[EXIT [error-value] |

error-value is an integer passed in the ERR variable to the CALLing program.

REMARKS
EXIT transfers program control to the program line that follows the originating CALL directive.
This directive can be used in Thoroughbred Basic Run Mode only.

If an error-value is specified in the EXIT directive it is treated as an error condition by the
CALLing program resulting in an ERR=error-value at the CALL program line.

Pressing the Escape key while executing a public program that does not have a SETESC
directive active results in an EXIT with ERR=39.

If an attempt is made to execute this directive in a program that is not a public program (a
program that is RUN rather than CALLed), an ERR=27 results.

A public program can also be terminated by an END directive. This has the same effect as an
EXIT that does not specify an error-value and does not pass any data to the CALLing
program.

EXAMPLES

[EXTT

returns program execution from the CALLed public program to the program line following
the originating CALL directive.

[EXIT 12

has the same effect as the first example but also sets the ERR system variable in the
CALLing program to 12 and causes an error condition in the CALLing program.

SEE ALSO

CALL and ENTER directives, ERR system variable

142

Copyright © 2013 Thoroughbred Software International, Inc.

EXITTO
Unconditional Branch and Clear Return Address

This directive acts as a GOTO with the additional feature that it removes one layer from the stack of
addresses. An address is added to this stack when the program executes a FOR directive, [ON] GOSUB
directive, WHILE/WEND directive, or when you press the Escape key with a SETESC directive active.
In simpler terms, this is the proper method of leaving an uncompleted FOR/NEXT loop or [ON]
GOSUB/RETURN subroutine, or removing the memory of where a program was executing when it
was interrupted by the Escape key.

[EXITTO line-ref |

line-ref is the program line number or label to branch to.

REMARKS

For nested loops or subroutines, this directive removes the most current or lowest layer from the
stack of addresses.

This directive can only be used in Thoroughbred Basic Run Mode. If you try to use this
directive in Thoroughbred Basic Console Mode, an ERR=45 results.

Extreme caution should be exercised when using the EXITTO directive. It is important that
the programmer truly know which return address layer is being removed by this directive
when it is actually executed.

EXAMPLES

[EXITTO 8976

branches to program line 8976 and removes the address of the most recent GOSUB, FOR, or
SETESC/ESCape key operation.

FOR I = 1 TO LEN(A$);
IF A$(1,1) = "X" THEN
EXITTO 1000

ELSE

NEXT 1|

searches through the string variable A$ looking for the character "X" and terminates the
FOR/NEXT loop with I = the character position of "X". If "X" is found, it branches to line
1000. If no "X" is found the FOR/NEXT loop ends normally and execution continues with
the next program line after the NEXT I.

SEE ALSO

GOTO directive

143

Copyright © 2013 Thoroughbred Software International, Inc.

EXP
Natural Logarithm Exponent
This numeric function returns the exponent for a given numeric-value based on its natural logarithm.

Given that the natural logarithm of a number is equal to an exponent, this function returns that exponent
when given the number.

[EXP (numeric-value [,ERR=Iine-ref|,ERC=error-code])

numeric-value is any number in the range of -262.49470060131 to +324.66449811215 (the
exponents corresponding to the numeric limits within Thoroughbred Basic of
+/-.99999999999999E-114 through +/-.99999999999999E+141).

line-ref is the program line number or label to branch to if an error is produced by this
function.
error-code is a programmer-defined error code. Valid values are positive or negative whole
numbers.
REMARKS

This function returns a value that ranges from 0.1E-113 to 0.9E+141.

Note that EXP and NLG are reverse functions, that is:

EXP (NLG(number))=number
NLG (EXP(number))=number

EXAMPLES

[EXP (0)

The result is 1.

[EXP (D

The result is 2.7182818284517.
SEE ALSO

NLG function

144

Copyright © 2013 Thoroughbred Software International, Inc.

EXTRACT

Read Data and Lock Record

This directive is used to READ data from a file and/or prevent anyone from WRITEing to that data
space (and associated key space) until another action is taken on the designated input/output channel.

[PIEXTRACT (channel [, 1/0-opts]) [variable-list]
[, 10L=line-ref]

[PTEXTRACT RECORD (channel [, 1/0-opts]) string-variable

channel is an integer in the range of 0 to 32764 indicating the channel of an OPEN
file.

1/0O-opts is one or more of the following specifiers:
Record IND=numeric-value

KEY=string-value
SRT=sort-name

Branching ERR=line-ref
DOM=line-ref
END-=line-ref

Miscellaneous TBL=line-ref
ERC=error-code

variable-list is a list of numeric and/or string variable names that receive values from
the record.
line-ref is the program line number or label containing an IOLIST directive that

defines a variable list (the IOL= option may be used by itself or together
with a variable list; the comma preceding IOL= is used only when a
variable precedes IOL=), or the program line number or label to branch to
if the specified error occurs.

string-variable is the name of a string variable that receives the entire record as data.
REMARKS

Starting with release level 8.2, a format may be specified to receive the data retrieved by the
directive.

The attempt to reference a format name that the data dictionary or the current program does
not recognize, results in an ERR=161.

The PEXTRACT directive is generally available starting with release level 8.0.

145

Copyright © 2013 Thoroughbred Software International, Inc.

The only difference between PEXTRACT and EXTRACT comes when the directive is
executed without using the KEY= option. In this case, EXTRACT obtains the next record
based on the next logical KEY value (the next highest collating sequence key) and
PEXTRACT obtains the next record based on the next logical PKY value (the next lowest
collating sequence key, or previous key).

Access to an EXTRACTed record is restricted to the task and 1/0 channel combination until,
using the same channel, that task performs a different 1/O operation or EXTRACTS another
record in the file.

A programmer can EXTRACT a record on one channel, which has already been READ on
another channel. Any attempt to reREAD the same record on the original READ channel
results in an ERR=0. Any attempt to WRITE the same record on the original channel or any
other channel except the EXTRACT channel results in an ERR=0.

1/0 options include:

IND= specifies the index number of the record to access.

KEY= specifies the key value of the record to access.

SRT= specifies which sort key to use for MSORT files.

ERR= specifies the program line number or label to branch to if an error is

produced by this directive.

DOM= specifies the program line number or label to branch to if an attempt is
made to access a record using KEY= and no such key value is found
(ERR=11). DOM= takes precedence over ERR= in the same EXTRACT
directive.

END= specifies the program line number or label to branch to if the end of the
file is reached (ERR=2). End of file for PEXTRACT signifies an attempt
to process a record less than the first key of the file. END= takes
precedence over the ERR= in the same EXTRACT directive.

TBL = specifies the program line number or label of the TABLE directive to be
used for code conversion for the incoming data (see TABLE directive).

ERC= specifies a programmer-defined error code, which enables programmers
to define and manage errors without branching. ERC= provides a
structured programming alternative to ERR=.

The IND= and KEY= options are mutually exclusive in the same EXTRACT directive. If
neither the IND= or KEY= options are used EXTRACT accesses the next logical record in
the file.

146

Copyright © 2013 Thoroughbred Software International, Inc.

For keyed-access files, after a normal READ, the KEY normally points to the next sequential
record in the file, PKY points to the previous record in the file, and the record just READ is
referred to as the current record. The EXTRACT directive causes KEY and PKY to point to
the current record until another 1/0O directive is issued on that channel.

An EXTRACT/WRITE sequence processes the file in sequential order without the necessity
of specifying Index or Key values for the records. (The WRITE updates the record pointer.)

For an EXTRACT without the RECORD clause, values from each field of the record being
accessed are loaded into the variable list or IOLIST in sequential order (i.e., the value of the
first field in the record is loaded into the first variable, the second value into the second
variable, etc.). An "*" is used to specify a field that is skipped and does not have data entered
into a variable. Fields in the record are separated by the hexadecimal character $8A$ (field
separator).

Note: For OPEN statements using the SEP= option, the field separator can be any character,
i.e., OPEN (2,SEP=$8F$) file. This allows for variable-length fields in a record. Field
separators are placed in the record by use of the WRITE directive without the
RECORD clause.

The RECORD modifier for this directive allows the entire record, including any field
separator characters, to be entered as data into a single string variable. This modifier cannot
be used with the IOL= option.

An EXTRACT using the KEY= option on a SORT file does not actually access any data
because SORT files contain only keys. However, the program can READ and WRITE SORT
key values.

This directive should not be used to READ data from a terminal.

Specifying a sort-name with the SRT= option sets the default sort sequence to the sort-name
key sequence. Subsequent [PIREAD or [PJEXTRACT directives that do not use the SRT=
option uses the new default sort sequence.

Starting with release 8.3.0, an attempt to reference a format or data name in the 1/0O list of a
channel that was OPENed with OPT="LINK" results in an ERR=172.

EXAMPLES

[EXTRACT (1) AS$, A

accesses the record with the next highest key in the file OPEN on channel 1 and transfers
data from the first field to the variable A$ and from the second field to the variable A. Access
to this record from all other channels or programs is prohibited.

147

Copyright © 2013 Thoroughbred Software International, Inc.

[PEXTRACT RECORD (1) B$ |

accesses the record with the next lowest key in the file OPEN on channel 1 and transfers the
entire record, including any field separators, into the variable B$.

[EXTRACT RECORD (1, IND=X, ERR=7999) B$ |

If X = 56 accesses the record having the Index number 56 and branches to program line 7999
if this directive produced any error condition, including End of File (ERR=2).

[EXTRACT (1, KEY=1$) 10L=5000 |

If 1I$="ASD#123" and program line 5000 is IOLIST A$,A, then this accesses the record with
the key value "ASD#123" and expects to find two fields which are placed in A$ and A.

[EXTRACT (1, KEY=K$)#DNFFMT |

reads a record out of the OPENed file and loads it into the data area of the format named
DNFFMT.

SEE ALSO

LOCK, READ and TABLE directives

148

Copyright © 2013 Thoroughbred Software International, Inc.

	ABS
	ACS
	ADD
	ADDR
	ADDSORT
	=ALL
	ATH
	AND
	API
	ARG
	ARGC
	ASC
	ASN
	ATH
	ATN
	ATQ
	ATR
	BEGIN
	BIN
	BREAK
	BSZ
	CALL
	CDN
	CDS
	CGV
	CHR
	CLEAR
	CLEAR ERC
	CLOSE
	CMASK
	COMMIT
	CONTINUE
	COS
	CPL
	CPP
	CRC
	CTC
	CTL
	CVT
	DATEMASK
	DATESTRINGS
	DAY
	DCM
	DEC
	DEF FN
	DELETE
	DELETE ARRAY
	DIM numeric array
	DIM string
	DIM string array
	DIM string function
	DIR
	DIRECT
	DISABLE
	DNE
	DROP
	DROP ALL
	DSD
	DSK
	DSZ
	DTN
	DTR
	DUMP
	EDIT - full screen
	EDIT - line
	EDIT recall
	EDITF
	ENABLE
	ENCRYPT
	END
	ENDTRACE
	ENTER
	EPT
	ERASE
	ERC
	ERM
	ERR function
	ERR variable
	ERRBUF
	ESC
	ESCAPE
	ESCAPE WHEN
	ESCOFF
	ESCON
	EXECUTE
	EXIT
	EXITTO
	EXP
	EXTRACT

